

Larsen \& Toubro is a technology-driven company that infuses engineering with imagination. The Company offers a wide range of advanced solutions in the field of Engineering, Construction, Electrical \& Automation, Machinery and Information Technology.

L\&T Switchgear, a part of the Electrical \& Automation business, is India's largest manufacturer of low voltage switchgear, with the scale, sophistication and range to meet global benchmarks. With over seven decades of experience in this field, the Company today enjoys a leadership position in the Indian market with a growing international presence.

It offers a complete range of products including powergear, controlgear, industrial automation, building electricals \& automation, reactive power management, energy meters, and protective relays. These products conform to Indian and International Standards.

$\|$ N $\square=$

Digital Panel Meters 1
AC Rotary Switches 25
DC Rotary Switches 55
Load Break Switches 59
Wires \& Cables 79
Cable Ducts 85
Timing Devices \& Supply Monitors 91
Modular Remote Control Units 157
Analog Panel Meters \& CT 177

Digital Panel Meters

Digital Panel Meters

LED Digital Panel Meter

VEGA Series ($96 \times 96 \mathrm{~mm}$)

Single Function Digital Panel Meter - VEGA

- Wide operating range of auxiliary supply
- Field programmable CT/PT ratio with password protection
- Auto scaling of Kilo and Mega
- Displays average and phase quantities*
- Inbuilt selector switch
- Auto and manual scrolling*
- Phase indication of displayed parameter through LED*
- Ammeter with secondary currents of 1 A and 5 A
* Applicable to 3 Phase Meters

VAF Digital Panel Meters - VEGA

- 3 line LED display
- Measures V, A, f, RPM and pf
- Models with secondary current of 5 A and 1 A
- Password protected programming mode through keypad includes
$>$ RPM : Number of poles programmable from 2 to 16 $>$ CT/PT ratio
- Suitable for $50 / 60 \mathrm{~Hz}$ electrical systems
- Auto scaling of Kilo \& Mega LEDs

Multifunction Digital Panel Meters - VEGA

- 3 Line LED display
- Parameters measured - V, A, f, pf, Neutral Current, Phase angle, Power, Energy, MD kVA, MD kW, average load
- Site selectable secondary current of 5 A and 1 A
- Unidirectional / bidirectional recording
- Cumulative import \& export and recording of reset parameters
- Current reversal indications
- Total Harmonic Distortion (THD) display
- Programmability and communication through RS485 port
- Easy programmability through key pad
- Field programmable CT \& PT ratios with password protection
- Two relays provided for tripping fault circuits on preprogrammed abnormal system conditions (Optional)
- Available in three ranges - Model A, B, C
- Auto scaling of Kilo, Mega \& Giga LEDs

- Freeze mode feature

Display Parameters

Display parameter list		1 Phase Voltmeter	3 phase Voltmeter	1 Phase Ammeter	3 Phase Ammeter	Frequency Meter	VAF Meter
Voltage	R Phase	\checkmark	\checkmark				\checkmark
	Y Phase		\checkmark				\checkmark
	B Phase		\checkmark				\checkmark
	Line Voltage		\checkmark				\checkmark
	Average		\checkmark				\checkmark
Current	R Phase			\checkmark	\checkmark		\checkmark
	Y Phase				\checkmark		\checkmark
	B Phase				\checkmark		\checkmark
	Average				\checkmark		\checkmark
Frequency						\checkmark	\checkmark
RPM (Rotations per minute)							\checkmark
Power factor							\checkmark

Digital Panel Meters

LED Digital Panel Meter

Multifunction Digital Panel Meter

	Parameters	Model A	Model B	Model C
Instantaneous Parameters	V1 V2 V3 Vavg ${ }^{\text {V12 }}$ V23 V31	\checkmark	\checkmark	\checkmark
	A1 A2 A3 A ${ }_{\text {avg }}$	\checkmark	\checkmark	\checkmark
	A_{n}		\checkmark	\checkmark
	F	\checkmark	\checkmark	\checkmark
	\% Load		\checkmark	\checkmark
	\% A Unbal, \% V Unbal	\checkmark	\checkmark	\checkmark
	PF-t PF-1 PF-2 PF-3	\checkmark	\checkmark	\checkmark
	RPM (Rotations per minute)	\checkmark	\checkmark	\checkmark
	Phase Angle $\mathrm{A}^{\circ} 1 \mathrm{~A}^{\circ} 2 \mathrm{~A}^{\circ} 3$	\checkmark	\checkmark	\checkmark
	W1 W2 W3 W ${ }_{\text {sum }}$	\checkmark	\checkmark	\checkmark
	VA1 VA2 VA3 VA sum	\checkmark	\checkmark	\checkmark
	VAR1 VAR2 VAR3 VAR ${ }_{\text {sum }}$	\checkmark	\checkmark	\checkmark
Demand / Load Parameters	Maximum demand MD VA, MD W, Max Avg A		\checkmark	\checkmark
	Rising demand RD VA (Import \& Export), RD W, Avg A		\checkmark	\checkmark
	Time remaining (Import \& Export) for VA		\checkmark	\checkmark
	Hr MD/Max occurred (VA, W, A)		\checkmark	\checkmark
Cumulative Parameters	Import Wh	\checkmark	\checkmark	\checkmark
	Import Vah	\checkmark	\checkmark	\checkmark
	Import VArh (Lead \& Lag)	\checkmark	\checkmark	\checkmark
	Import run hours	\checkmark	\checkmark	\checkmark
	Export Wh			\checkmark
	Export Vah			\checkmark
	Export Varh (Lead \& Lag)			\checkmark
	Export run hours			\checkmark
	ON hours	\checkmark	\checkmark	\checkmark
	INTR	\checkmark	\checkmark	\checkmark
	No. of Resets	\checkmark	\checkmark	\checkmark
Reset MD	Reset MD VA		\checkmark	\checkmark
	Reset MD W		\checkmark	\checkmark
	Reset Max Avg A		\checkmark	\checkmark
Reset Cumulative Parameters	Import Wh	\checkmark	\checkmark	\checkmark
	Import Vah	\checkmark	\checkmark	\checkmark
	Import Varh (Lead \& Lag)	\checkmark	\checkmark	\checkmark
	Import run hours	\checkmark	\checkmark	\checkmark
	Export Wh			\checkmark
	Export Vah			\checkmark
	Export Varh (Lead \& Lag)			\checkmark
	Export run hours			\checkmark
Harmonic	V V1 V2 V3 - harmonic	\checkmark *	\checkmark *	\checkmark
	AA1 A2 A3 - harmonic	\checkmark *	\checkmark *	\checkmark
Modbus	Modbus slave ID	\checkmark	\checkmark	\checkmark
	Baud rate value	\checkmark	\checkmark	\checkmark
Relays (Optional)	2 Relays for fault tripping	\checkmark	\checkmark	\checkmark

\# THD in Model A and B is not applicable for meters with relay output.

Digital Panel Meters

LED Digital Panel Meter

Technical Specifications:
(Common for Single Function, VAF \& Multi-Function Panel meters)

Model	VEGA	
Auxiliary Supply	Auxiliary voltage	Single function : 90 to 300 V AC
		VAF : 90 to 300 V AC
		Multifunction : 80 to 300 V AC
	Auxiliary burden	$<4 \mathrm{VA}$
	Frequency range	$50 \mathrm{~Hz} \pm 5 \%$
Measuring Circuit (Parameters as applicable to individual meters)	Class of accuracy	For voltage and current : Class 1.0, Class 0.5*
		For frequency : 0.2\% of mid frequency
		(Parameters as applicable to individual meters)
	Measurement circuit burden	<0.2 VA per phase
	Input voltage measurement range	$\begin{aligned} & 10 \mathrm{~V} \text { to } 300 \mathrm{~V}(\mathrm{P}-\mathrm{N}) \\ & 17.32 \mathrm{~V}(\mathrm{P}-\mathrm{P}) \text { to } 520 \mathrm{~V}(\mathrm{P}-\mathrm{P}) \end{aligned}$
	Basic current	-/5 A, -/1 A
	Input current measurement range	2\% to 120\% of basic current
	Voltage range for class of accuracy	$\begin{aligned} & 57.7 \mathrm{~V}(\mathrm{P}-\mathrm{N}) \text { to } 277 \mathrm{~V}(\mathrm{P}-\mathrm{N}) \\ & 100 \mathrm{~V}(\mathrm{P}-\mathrm{P}) \text { to } 480 \mathrm{~V}(\mathrm{P}-\mathrm{P}) \end{aligned}$
	Current range for class of accuracy	5% to 120\% of basic current
	Input frequency range	45 Hz to 65 Hz
Insulation Properties	Impulse voltage test	$\pm 4 \mathrm{kV}$ as per IEC 62053-21
	AC voltage test	4 kV double insulation as per IEC 62053-21
	Insulation resistance	500 V DC as per IS 13779
Electrical Requirements	Test of power consumption	as per IEC 62053-21
	Voltage dips and interrupts	as per IEC 61326-1
	Short time over current protection	For Multifunction, VAF and Ammeter :
		20 times of $\mathrm{I}_{\max }$ for half a second as per 7.2 of IEC 62053-21
		(Not applicable for Voltmeter and Frequency meter)
Electro-Magnetic Compatibility (EMC)	Fast transients burst test	$\pm 4 \mathrm{kV}$ as per IEC 61000-4-4
	Immunity to electrostatic discharge	$\pm 8 \mathrm{kV}$ air discharge, $\pm 6 \mathrm{kV}$ contact discharge as per IEC 61000-4-2
	Radiated, radio-frequency, electromagnetic field immunity test	$10 \mathrm{~V} / \mathrm{m}$ as per 61000-4-3
	Immunity to electromagnetic HF fields through conducted lines	3 V as per IEC 61000-4-6
	Surge immunity test	$\pm 4 \mathrm{kV}$ as per IEC 61000-4-5
	Rated power frequency magnetic fields	$1 \mathrm{~A} / \mathrm{m}$ as per IEC 61000-4-8
	Emission	Class B as per CISPR 22
Operating Conditions	Operating temperature	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
	Storage temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Humidity	0 to 95\% relative humidity non-condensing
Mechanical Tests	Shock	40 g in 3 planes
	Vibration	10 to $55 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ amplitude
	Casing	Plastic mould protected to IP51 from front side
Dimensions	Weight	Single function : 255 g (approx.) VAF $: 350 \mathrm{~g}$ (approx.) Multifunction $: 400 \mathrm{~g}$ (approx.)
	Dimensions	Single Function: $96^{*} 96^{*} 45 \mathrm{~mm}$ (approx.) VAF Multifunction $: 96^{*} 96^{*} 45 \mathrm{~mm}$ (approx.)
Certifications	C	

\# Class 0.5 applicable for multifunction meters

Digital Panel Meters

LED Digital Panel Meter

Overall Dimensions (mm)
Single Function, VAF Meters

Multi-Function Panel Meters

Panel Cutout Dimensions $92 \mathrm{~mm} \times 92 \mathrm{~mm}$
Connection Details
Single Function Meters

Single Phase Voltmeter

Single Phase Ammeter

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

Frequency Meter

Three Phase Voltmeter

Three Phase Ammeter

VAF Meter

Digital Panel Meters

LED Digital Panel Meter

Multifunction Meters

3 Phase 4 Wire

3 Phase 3 Wire

Note:

- Connection of point 17 and 18 is not applicable for model A
- D- and D+ are for communication using RS485
- RI1 and RI2 are relay connections

RS485 connection diagram

Typical connection diagram of RS485

The default slave ID of meter is 1 . In case of multiple meters connected in a network, the slave IDs to be unique to network. RS485 modbus protocol allows up to 247 meters to be connected in a network. But the signal strength of RS485 allows only 32 meters to be connected in a network. Hence to enable connection up to 247 meters, repeaters to be connected to improve the signals strength. Above figure shows the typical network connection for RS485 communication. Repeaters are not shown in figure for simplicity. The value of the termination resistor should be equal to the cable impedance. The cable impedance can be obtained from the cable manufacturer. In case value of cable impedance is not known, usually $120 \Omega, 5 \mathrm{~W}$ resistor will work fine. The function of the termination resistor is to reduce the reflection of signals at the ends.

Check list for programming parameters during installation

Sr. No.	Parameters
1	CT \&PT ratios
2	System configuration 3P3W or 3P4W) mode
3	MD integration period
4	Relay operation setting
5	RS485 communication setting

Digital Panel Meters

LED Digital Panel Meter

Programming Procedure for Single Function Meters

Sr. No.	Action with Keys	Display
1	Press UP KEY and DOWN KEY together to enter in the programming mode. Display will show "PASS"	P955
2	Then it will display "0000" with left most digit blinking	OROO
3	Enter the password for user authentication. Default password is "0000". Password can be changed once meter displays 'PPrg'.	PPrg
4	Use up \& DOWN key together to accept the password. Note : Cursor should be at left most digit. Only then meter will update value	
5	If Password is correct and accepted Then meter displays "ACPt" and then shows first programming parameter "PtPr" for voltmeter or "CtPr" for Ammeter	$\begin{aligned} & \text { REPL } \\ & \text { PLPr } \\ & \text { ELPr } \end{aligned}$
6	If entered password is incorrect. Then displays "PErr" (Password Error) it will exit programming mode by restart.	PErr
7	Use UP KEY to scroll the main menu programming pages/sub pages	Page Scrolling
8	Use DOWN KEY to select the page/sub pages and change the value of it	Parameter default/Previous value with left most digit binking
9	Press UP KEY to increment the value at the cursor position	0/1/2/3/4/5/6/7/8/9
10	Press DOWN KEY to shift cursor position to right	
11	Press UP \& DOWN keys together to enter in to update-mode. Display will show "UPdt". NOTE : Cursor should be at left most digit. Only then meter will update value.	UPdt
12	Press UP KEY to accept the entered value/DOWN key to skip the entered value. If UP KEY, then display will show "ACPt" and then it will show updated value. If DOWN KEY, then display will show previous value.	REPL
13	If entered parameter -value is wrong. i.e., if secondary value is more than primary, display will show "derr" (data error) and displays previous value.	dQrer
14	Press UP \& DOWN key to exit programming mode. Meter displays "ESCP" then "rSEt" and exits the programming mode by restart.	E 5 [P $r 5 E t$

Digital Panel Meters

LED Digital Panel Meter

Multifunction Meters

－Bright 7 segment Displays for displaying the Parameters
－LEDs for indicating units（kilo，Mega \＆Giga values．）
－LEDs for indicating Reverse of individual phases if any of the phases are reversed，the reversed phases indicated through LEDs
－LEDs for indicating Lead，export and communication

Front panel push buttons：

Three push buttons Up（1）Down \＆Mode mODE to do following functions：
－Scrolling through display parameters
－Programming of parameters
－Increase／Decrease the numeric values during programming

Programming using push buttons

Sr．No．	Action with Keys	Display
1	Press up key and down key simultaneously to enter to programming mode．Meter displays PASS \＆ 0000 with first digit blinking．	P955
2	Enter the password for users authentication（Default password is 0000）． Press mode key．Password can be changed in the programming mode． Once meter displays＂PASS＂（password）．	ORT0
3	If password is correct，meter displays ACPt followed by first programming parameter．	のEPL
4	If entered password is incorrect，meter displays PErr \＆meter will return to display parameters．	PErr
5	Press up Key to scroll the main menu programming pages．	Pages scrolling
6	Press mode key to select the page．Parameter default／Previous value with first digit blinking	
7	Press up key to increment the cursor position value	0／1／2／3／4／5／6／7／8／9
8	Press down key to shift cursor position to right	－－－－
9	I）Press mode key to update the values．＂UUPd＂will be displayed． ii）Press up key to accept the entered value／down key to skip the entered value．	$\begin{array}{ll} \text { Step i } H P d \\ \text { Step ii } A[P G \end{array}$
10	Press up \＆down key to exit programming mode，meter will display ＇ESCP＇\＆＇rSEt＇then followed by restart	$\begin{aligned} & \text { E5 5 } \\ & \text { r 5Et } \end{aligned}$
11	For manual reset press up key and mode key simultaneously in manual scroll mode．Meter displays＂rSt＂and continued by display parameter．	r－5t
12	In Freeze mode，＇Desired parameter can be monitored continuously＇． 1）To enter Freeze mode ：Press＇MODE＇key continuously for $3 s e c$ to freeze the parameter．The meter displays＂diSP StAY On＂and then continues to show display parameter on which it has been freezed． 2）To exit Freeze mode（To Unfreeze）：Press＇MODE＇key for 3sec，the meter displays ＂diSP StAY OFF＂and continues to display scroll mode． 3）In case of power fail and resume：If the freeze mode is activated，on power resume， Meter Displays＂diSP StAY On＂and then continue to show display parameter on which it was freezed．	d15p 5t 月y ロー d15p 5 t 胢 DFF

[^0]
Digital Panel Meters

LED Digital Panel Meter

Ordering Information
Single Function Meters

Type of Meter	1 Phase / 3 Phase	Cat. No.
Voltmeter	1 Phase Meters	WDS101FEV00
	3 Phase Meters	WDS301FEV00
Ammeter	1 A secondary)	1 Phase Meters
Ammeter		
(1 A secondary)	3 Phase Meters	WDS101FCA00
Frequency Meter	1 Phase Meters	WDS301FCA00
3 Phase Meters	WDS101OCA00	

VAF, pf Meters

Type	Current Rating	Cat. No.
VAF Meters	5 A	WDV303FC000
$90-300$ V Aux. Supply	1 A	WDV303OC000

Multifunction Meters

Accuracy	Relay	Type of meter	Current Rating	Cat. No.
Class 1	Without Relay	Model A	1A/5A	WDM303FDWA1
		Model B		WDM303FDNB1
		Model C		WDM303FDNC1
	With Relay	Model A	5A	WDM303FDWA0
		Model B		WDM303FDNB0
		Model C		WDM303FDNC0
Class 0.5	Without Relay	Model A	1A/5A	WDM313CDWA1
		Model B		WDM313CDNB1
		Model C		WDM313CDNC1

Digital Panel Meters

LCD Digital Panel Meter

Multifunction meter QUASAR ($96 \times 96 \mathrm{~mm}$)
The meter is designed with DSP technology to combine measurement of both instantaneous and cumulative values in an electrical feeder. The parameters are displayed over 22 screens that can be scrolled up \& down by front panel push buttons.

- Class 0.5 \& 1.0 as per IS \& IEC standards
- kWh, kVArh \& kVAh
- LCD with back light
- CT/PT ratio programming
- RS485 communication
- Phase sequence

- Harmonic measurement

Technical Specifications:

Model	QUASAR	
Accuracy	For power Class 1.0 IEC 62052-11, 62053-21/ IS 13779	
	For voltage $\pm 10 \%$	
	For current 0.5% of readout ± 2 digits	
Voltage (Vn)	3 Ph $4 \mathrm{~W}-415$ V AC (-40% to +20\%)	
	3 Ph 4 W-110 V AC (-40\% to +20\%)	
	3 Ph $3 \mathrm{~W}-110 \mathrm{~V}$ AC (-40% to +20\%)	
Current (In)	5 A or $1 \mathrm{~A}\left(\mathrm{I}_{\text {max }}=2 \mathrm{ln}\right)$	
Starting Current	0.2\% in (Class 1.0)	
Frequency	$50 \mathrm{~Hz} \pm 5 \%$	
Load Characteristics	< 8 VA in potential circuit	
	<0.5 VA in current circuit	
Electromagnetic Compatibility:		
Electrical Fast Transient	As Per IEC 62052-11, 62053-21, Test Level: 4 kV, 5 k Hz	
Surge Immunity	As Per IEC 62052-11, 62053-21, Test Level: 4 kV	
Influence of Short Time Over Currents	20 times $\mathrm{I}_{\max }$ for 0.5 sec at rated frequency. As per IEC 62053-21	
Case Material	Plastic moulded protected to IP51- IEC 62052-11, 62053-21/IS 13779 (Class 1.0) (with panel)	
Insulation Properties:		
Insulation Resistance	As per IEC 62052-11, 62053-21 / IS 13779 (Class 1.0)	
AC voltage Test	2 kV AC RMS, 50 Hz for 1 minute as per IEC 62052-11	
Impulse Voltage	$6 \mathrm{kV}, 1.2 / 50 \mu \mathrm{sec}$, as per IEC 62052-11	
Voltage Dips and Interrupts	As per IEC 61000-4-11	
Display	Backlit LCD, 10 mm height digits	
Pulse Output	Pulses/kWh	Voltage/Current
	2,500 / (external CT* PT)	3 Ph 4 W 415 V (L-L) / 5 A
	12,500 / (external CT* PT)	3 Ph 4 W 415 V (L-L) / 1 A
	10,000 / (external CT* PT)	3 Ph 4 W / 3 W 110 V (L-L) / 5 A
	50,000 / (external CT* PT)	3 Ph 4 W / 3 W 110 V (L-L) / 1 A
Temperature	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ for operation	
	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for storage	
Humidity	95\% RH non condensing	
Dimension	$96 \times 96 \mathrm{~mm}$ - depth 105 mm	
Weight	< 600 gms	

Digital Panel Meters

LCD Digital Panel Meter

Display Parameters:

Screen 1 - V, A, kW
Screen 2-R - Y - B P - N Voltages
Screen 3-R - Y - B P - P Voltages
Screen $4-\mathrm{R}-\mathrm{Y}$ - B Currents
Screen 5-R - Y - B kW
Screen 6 - R - Y - B kVAr
Screen 7 - R - Y - B kVA
Screen 8 - R - Y-B pF
Screen $9-\mathrm{R}-\mathrm{Y}$ - B Volt angles
Screen $10-\mathrm{R}$ - Y - B Phase angles
Screen 11 -kW + kVAr $+k V A$

Screen $12-\mathrm{Pd}+\mathrm{pF}+\mathrm{F}$
Screen 13 - kWh
Screen 14 - kVArh (L)
Screen 15 - kVArh (C)
Screen 16 - kVAh
Screen 17 - R ph Voltage - Harmonics
Screen 18 - Y ph Voltage - Harmonics
Screen 19 - B ph Voltage - Harmonics
Screen 20 - R ph Current - Harmonics
Screen 21 - Y ph Current - Harmonics
Screen 22 - B ph Current - Harmonics

Overall Dimensions (mm)

Panel Cutout $92 \times 92 \mathrm{~mm}$

All screens of display can be viewed one after the other by pressing Δ or Push buttons of front panel. Pressing \triangle \& keys simultaneously will take display to auto scroll mode
button can be pressed to display and switch between Min., Max. or present values one after the other. The display will remain in Min \& Max modes until the push button is pressed again.

Reset push button resets the max/min values, except Power Demand \& Energies. This can be cleared only in programming mode.

Programming mode can be entered from front panel by pressing simultaneously and kede keys.

Digital Panel Meters

LCD Digital Panel Meter

Connection Details (Wiring Diagram)
3 Ph. 4 Wire with CT \& PT

3 Ph. 4 Wire with CT \& without PT

3 Ph. 3 Wire with CT \& PT

3 Ph. 3 Wire with CT \& without PT

Digital Panel Meters

LCD Digital Panel Meter

Ordering Information

Digital Panel Meters

LCD Digital Panel Meter

Multifunction Meter - NOVA

Compact, digital, panel mount meter for kWh measurement. Nova is flush mount 3 Phase 4 Wire CT operated Multifunction meter with (optional) RS485 MODBUS communication.

- Accuracy class - 1.0
- Measures kWh \& kW
- Forwarded energy registration in case of current reversal
- Phase wise Voltage, Current \& Power on display
- Average Voltage \& Current on display
- Phase sequence on display
- RS485 MODBUS communication
- Auto \& manual display mode
- User friendly menu driven LCD display
- Field programmable CT/PT ratio
- Customised LCD display \& Push Button navigation
- Scroll lock feature for locking of a desired parameter on display
- Low CT/PT burden
- High resolution energy
- Auxiliary supply 88 V to 300 V AC/DC

Technical Specifications:

Model	NOVA
Enclosure	Engineering Plastic complying to IP51
Dimension	$96 \times 96 \mathrm{~mm} \times 105 \mathrm{~mm}(\mathrm{HxWxD})$ Panel Cutout: $92 \times 92 \mathrm{~mm}$
Connection	3 P 4 W
Display	Backlit LCD
Type	kWh Meter
Measurements	kWh / kW / Frequency / Voltage / Current / Power factor
Starting Current	0.2% of rated current (5 A)
Class of Accuracy	5 Class 1.0
Current	$3 \times 240 \mathrm{~V}$ (-30 \% to $+20 \%$ of V Ref)
Voltage (P-N)	$50 \mathrm{~Hz} \pm 5 \%$
Frequency	$88 \mathrm{~V} \mathrm{to} 300 \mathrm{~V} \mathrm{AC/DC}$
Auxiliary Supply	$450 \mathrm{gm} \pm 5 \%$
Weight	$610 \mathrm{gm} \pm 5 \%$
Weight with Packaging	

Display Parameters:

- Cumulative EB Energy kWh
- Average Voltage
- R Phase Voltage
- Y Phase Voltage
- B Phase Voltage
- R Phase Current
- Y Phase Current
- B Phase Current
- R Phase Active Power
- Y Phase Active Power
- B Phase Active Power
- Phase Sequence

Digital Panel Meters

LCD Digital Panel Meter

Overall Dimensions (mm)

Panel Cutout $92 \times 92 \mathrm{~mm}$

Connection Details

- Meter connection should be done exactly as shown in above diagrams
- Make the CT connections on terminals 1-2 (R-Ph), 3-4 (Y-Ph) and 5-6 (B-Ph)
- Make the PT connections on the terminals $9(\mathrm{R}), 10(\mathrm{Y}), 11(\mathrm{~B})$ and $12(\mathrm{~N})$
- Connect the Auxiliary Supply (88 V to 300 V AC/DC) to the terminals 13 (-ve) and 14 (+ve) to power ON the meter. It can be done by shorting one phase with auxiliary as shown in the above picture

Ordering Information

Cat. No.	Description
WM30KFC3CRS	3 Ph 4 W 240 V 5 A MFM with RS485 port - Nova
WM30KFC3C00	3 Ph 4 W 240 V 5 A MFM - Nova

Programming of NOVA

Freeze Mode

To see the selected parameter continuously, press \& scroll buttons together for 2 seconds. There is no time out period for freeze mode. Press or scroll button simultaneously to come out of freeze mode. The meter will go back to its previous scroll mode (auto/manual).

Password Setting

In the Programming Menu, press and hold scroll UP key to get "Set Pass" and then press SELECT key	SEL PR55
Press UP key to change the blinking digit. Press UP and SELECT key together to shift to next digit. Press SELECT key to save the password	

Digital Panel Meters

LCD Digital Panel Meter

Entering into Programming Mode

Press and hold the SELECT and scroll UP key together to move to the programming mode.	
Press scroll DOWN key (used as Escape key in programming mode)	
to come out from the programming mode. "ESCAPE" will be displayed.	
Enter the password by pressing \& holding the scroll UP key. The default password is "0000". Press and hold scroll UP to increment the value of the blinking digit. Press and hold SELECT and scroll UP together to shift to next digit.	
Press select key to enter the password. Password accepted (PASS ACPTD) or Password Error ('PASS Err') will be displayed. Only if password is accepted, meter will enter into programming mode. The following programming options are available - Programming CT/PT ratio - Setting slave id - Setting communication port - Setting password	

Meter will not record energy when it is in programming mode. Time out period of 2 min is provided for programming mode.

Programming CT / PT ratio

In the Programming Menu, press and hold scroll UP key to get	
"CT PT Ratio" and then press SELECT key.	
- Press SELECT key When "CT Pr 0001" is displayed to program CT Primary current.	
- Press and hold SELECT and scroll UP keys together to shift digit.	
- Press scroll UP key to change value.	
- Press SELECT key to save change. "L UPdAte" will come in display.	
Again press select key to store the value.	
- Scroll UP and press SELECT key when "CT SE 0001" is displayed	
to program CT Secondary current.	
- In same process program the CT Secondary value.	
- Scroll UP and press SELECT key When "PT Pr 0001"	
is displayed to program PT Primary voltage.	
- Press and hold SELECT key and scroll UP key together to shift digit.	
- Press scroll UP key to change value.	
- Press SELECT key to save change. "L UPdAtE" will come in	
display. Again press select key to store the value.	

- CT PT ratio should not exceed 999999, if exceeded the meter will display "dAtA Err"
- Pulse Rate $=2500 \mathrm{imp} / \mathrm{kWh}$ (for CT PT ratio - 1)
- Pulse rate will vary if CT/PT ratio is changed
- When CTPT Ratio is programmed >1000, energy in MWh (Mega watt hour) will be displayed as "kkWh"
- Decimal points on the display format will be changed according to the CTPT ratio programmed.

kWh Meter - Counter Type

ACRUX (96 x96 mm)

Ideal product for control panels to measure kWh energy. Compactness of the meter ensures that it will fit in smartly into any panel. L\&T offers this product in 3 phase 4 wire.

- Class 1.0 accuracy
- Active energy measurement
- Stepper motor counter display
- Pulse output LED
- Terminal covers with sealing provision

Technical Specifications:

Model	ACRUX
Accuracy	Class 1.0 as per IS 13779
Voltage Rating	240 V (3 Phase 4 Wire)
Current Rating (Ib)	$5 \mathrm{~A} \& 1 \mathrm{~A}$
Frequency	$50 \mathrm{~Hz} \pm 5 \%$
Maximum Current	200% of Ib
Starting Current	0.4% of lb
Operating Temperature	0 to $55^{\circ} \mathrm{C}$
Display	6 Digit stepper motor counter
Enclosure	Polycarbonate
Weight	$500 \mathrm{~g} \mathrm{(approximate)}$
Mounting	Flush mounting

Display Parameters:

Cumulative Energy kWh

Overall Dimensions (mm)

Connection Details

3 P 4 W with CT 240 V-1 A \& 5 A

Ordering Information

Cat. No.	Description
WM301FC1C10	3 Ph 4 W 240 V 1 A (kWh meter counter type) - Acrux
WM301FC3C10	3 Ph 4 W 240 V 5 A (kWh meter counter type) - Acrux

Digital Panel Meters

Dual Source Meter

GEMiNi (96 x 96 mm)
An innovative panel meter designed for dual source energy measurement. It serves as a replacement for two separate energy meters necessary for metering same application with dual energy sources.

- Class 1.0 accuracy as per IS \& IEC standards
- Dual energy register for dual energy source
- RS485 MODBUS communication
- Field programmable CT, PT Values \& Meter ID

Technical Specifications:

Model	GEMiNi
Enclosure	Engineering Plastic complying to IP51
Dimension	$\begin{aligned} & 96 \times 96 \mathrm{~mm} \times 105 \mathrm{~mm}(\mathrm{HxWxD}) \\ & \text { Panel Cutout: } 92 \times 92 \mathrm{~mm} \end{aligned}$
Connection	3 P 4 W
Display	Backlit LCD
Type	kWh Meter
Measurements	kWh / kW / Frequency / Voltage / Current
Starting Current	0.2\% of rated current (5A)
Class of Accuracy	Class 1.0
Current	5 A (rated), 10 A (max)
Voltage (P-N)	$3 \times 240 \mathrm{~V}$ (-30 \% to +20 \% of V Ref)
Frequency	$50 \mathrm{~Hz} \pm 5 \%$
Auxiliary Supply	88 V to 300 V AC/DC
DG Sensing Input	18 V -60 V DC/80 V-300 V AC
Weight	$470 \mathrm{gm} \pm 5 \%$
Weight with Packaging	$630 \mathrm{gm} \pm 5 \%$

Dual Energy Registers:

Two separate energy registers are provided, one for EB (Electricity Board supply) and another for G (Generator Supply). Normally meter accumulates energy in EB register. Whenever the DG sensing signal (18 to 60 V DC /80 to 300 V AC) is present, meter accumulates energy in G register. Separate LED indication is provided on the meter front panel, which glows when DG sensing signal is present.

Display Parameters:

- Cumulative EB Energy kWh
- Cumulative Gen. Energy kWh
- Average Voltage
- Average Current
- Total Active Power
- Frequency
- R Phase Voltage
- Y Phase Voltage
- B Phase Voltage
- R Phase Current
- Y Phase Current
- B Phase Current
- R Phase Active Power
- Y Phase Active Power
- B Phase Active Power
- Phase Sequence

Digital Panel Meters

Dual Source Meter

Overall Dimensions (mm)

Connection Details

- Meter connection should be done exactly as shown in above diagram
- Make the CT connections on terminals 1-2 (R-Ph), 3-4 (Y-Ph) and 5-6 (B-Ph)
- Make the PT connections on the terminals $9(\mathrm{R}), 10(\mathrm{Y}), 11(\mathrm{~B})$ and $12(\mathrm{~N})$
- Connect the Auxiliary Supply (88 V to 300 V AC/DC) to the terminals 13 (-ve) and 14 (+ve) to power on the meter; It can be done by shorting one phase with auxiliary as shown in the above picture
- Connect the DG sensing input ($18 \mathrm{~V}-60 \mathrm{~V}$ DC/80 V - 300 V AC) on terminal 15 (-ve) \& 16 (+ve)

Ordering Information

Cat. No.	Description
WM30DFC3CRS	3 Ph 4 W 240 V 5 A with RS485 (Dual source kWh meter) - GEMiNi

Digital Panel Meters

DIN Energy Meter

mi-energy (DIN rail type)

Available in 3 phase and 1 phase models, these meters can be mounted inside distribution boxes to monitor electric consumption of identified loads, circuits and areas.

- LCD display
- Class 2 accuracy
- Displays day, week, month and push-to-push kWh consumption

- Low starting current
- Reverse current indication*
- Compact size and easy mounting
* For 3 Phase Meter

mi-energy - The energy monitor

mi-energy is a small energy monitoring device that helps in increasing awareness of energy consumption at the point of installation. It helps in monitoring of energy guzzling devices to take corrective actions. It shows the amount of money spent in consuming energy.

Ideal applications include residential buildings, shopping malls, factories, etc.
An energy monitor alone can't save any energy - but it makes one aware of level of energy consumption. Therefore it's a great tool to help bring a change in user behavior and cut electricity bills.
It is good to remember that in most cases one is likely to get a return on investment if one reduce their energy usage as a result of buying mi-energy.

The device has a LCD screen to display the readings. Also when used along with Wi-fi module, the entire data can be viewed on laptop, tablet or smart phones in real time.
Some of the most convenient features and benefits of mi-energy include:

- Adisplay that shows current energy use;
- Wireless connectivity so that it can be viewed anywhere in the hotspot range.
- Ease of historical data availability including daily, weekly and monthly usage.

All the following....

directly on your Wi-Fi enabled device!
Consumption Pattern

- Energy consumption in rupees
- Instantaneous power parameters
- Present day, week and month consumption
- Previous day, week and month consumption
- Last 24 hours consumption pattern

Digital Panel Meters

DIN Energy Meter
Technical Specifications:

Display	Type	6 digit LCD
	Height	6 mm (10 mm in case of 3 Phase meter)
Measuring Circuit	Class of accuracy	Class 2 as per IEC 62053-21
	Measurement circuit burden	<1 W, <8 VA
	Rated Voltage	240 V
	Current	3 phase: 10-60 A 1 phase: 5-30 A
	Starting current	3 phase: 40 mA 1 phase: 20 mA
	Voltage range for class of accuracy	-30% to +20\% of rated voltage
	Current range for class of accuracy	$5 \% I_{b}$ to $I_{\text {max }}$
	Input frequency range	$50 \mathrm{~Hz} \pm 5 \%$
Insulation Properties	Impulse voltage test	$\pm 6 \mathrm{kV}$ as per IEC 62052-11
	AC voltage test	4 kV double insulation as per IEC 62053-21
	Insulation resistance	500 V DC as per IS 13779
Electrical Requirements	Test of power consumption	IEC 62053-21
	Voltage dips and interrupts	IEC 62052-11
	Short time over current protection	20 times of $I_{\text {max }}$ for half a second as per IEC 62053-21
Electro-Magnetic Compatibility (EMC)	Fast transients burst test	IEC 61000-4-4
	Immunity to electrostatic discharge	IEC61000-4-2
	Immunity to electromagnetic HF fields	IEC61000-4-3
	Immunity to conducted disturbances by RF field	IEC61000-4-6
	Surge immunity test	$\pm 4 \mathrm{kV}$ as per IEC 61000-4-5
Climatic Test	Dry heat test	IS 9000 (part 3)
	Cold test	IS 9000 (part 2)
	Damp heat cyclic test	IS 9000 (part 5)
Operating Conditions	Operating temperature	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
	Storage temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Mechanical Tests	Shock	IS 9000 (part 7)
	Vibration	IS 9000 (part 8)
	Resistance to dust and water	IP20
Dimensions	Weight	3 phase: 460 g (approx.) 1 phase: 150 g (approx.)
	Dimensions	3 phase: $125 \mathrm{~mm} \times 83 \mathrm{~mm} \times 63.5 \mathrm{~mm}$ (approx.) 1 Phase: $36 \mathrm{~mm} \times 83 \mathrm{~mm} \times 66.73 \mathrm{~mm}$ (approx.)

Ordering Information

Cat. No.	Description
W2DLD050600	1 Ph 5-30A, 240V, Class 2
W4DLD100600	3 Ph 10-60, 240V, Class 2
W1DLD0000RS	RS 485 module
W1DLD0000WF	Wi - Fi module

Digital Panel Meters

DIN Energy Meter
Display Parameters

Parameters		3-Phase Meter	1-Phase Meter
Instantaneous Parameters	Phase voltage	\checkmark	\checkmark
	Phase current	\checkmark	\checkmark
	Power factor	\checkmark	
	Active power	\checkmark	\checkmark
	Reactive power	\checkmark	
	Apparent power	\checkmark	
	Frequency	\checkmark	
Maximum Demand	Present month	\checkmark	
	Previous month	\checkmark	
kWh Consumption	Total	\checkmark	\checkmark
	Present day	\checkmark	\checkmark
	Present week	\checkmark	\checkmark
	Present month	\checkmark	\checkmark
	Push-to-push	\checkmark	\checkmark
	Previous day	\checkmark	\checkmark
	Previous week	\checkmark	\checkmark
	Previous month	\checkmark	\checkmark

Wiring Diagram

Dimensional Details

DIN Energy Meter

Operating Instructions

Parameter scrolling : The default display mode is Auto Scroll Mode in which the parameters scroll automatically. On pressing key, the meter display goes to manual mode.

If key press doesn't happen for approximately 30 seconds, meter display return to default mode i.e. Auto Scroll mode for single phase and 5 minutes for three phase meter.

Push to Push consumption : The push button is also used for measuring Push to Push kWh consumption.

Follow the below steps to measure the Push to Push kWh consumption for single phase meter.

a) Scroll through the parameters until kWh is displayed.
b) Press and hold the push button, it shall reset to zero.
c) Energy recording starts in display
d) To stop the Push to Push consumption press and hold the push button in kWh display.
e) Check kWh display to get the energy consumed value between the start and stop operations.

Follow the below steps to measure the Push to Push consumption for three phase meter

a) Scroll through the parameters until the push to push consumption (P0) is displayed.
b) When P0 is displayed press and hold the push button, it resets to zero.
c) Energy recording starts in P0 display.
d) To stop the Push to Push consumption press and hold the push button in P0 display.
e) Check the display parameter P1 to get the energy consumed value between the start and stop operation.

Digital Panel Meters

DIN Energy Meter

mi-energy Communication modules

1. RS 485 module

This module can communicate the data to central system for data monitoring.

2. Wi-Fi Module

- Integrated with 1 Phase and 3 Phase meters
- IEEE $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ compliant
- Works in both infrastructure and ad-hoc modes
- Applications available for Windows laptops, Android and Symbian devices to view data

Schematic for Wi-Fi: Infrastructure-Devices join a central router and communicate with each other.

mi-energy app

The app has 5 navigable screens on the sidebar

- Home : Displays the estimated bill for the month
- Billing : Shows kWh consumption in day-wise, week-wise, month-wise and total
- Trends : Graphical display of hour-wise and day-wise kWh consumption of last 30 days
- Instant : Displays the instantaneous parameters
- Settings : To enter IP address and set the consumption rate

AC Rotary Switches

CAM Operated Rotary Switches

Introduction

Cam Operated Rotary Switches are used to perform make and break operation in a sequential way by rotating the switch to different positions.

The Cam, which closes and opens the contacts, has rotary movement in multiple positions, thereby controlling multiple circuit functions.

Further the flexibility in the switch type selection covering various current / voltage ratings and options to select the number of contacts, is an added advantage. This ensures that a right switch is chosen for the desired application.

CAM Switches thus offer complete design flexibility to assemble complex switching programs, contact ratings and customize all switching applications. Cam Switches are suitable for AC as well as DC switching applications.

The basic operating mechanism of cam switch is intended to suit application coupled with 'Quick-Make', 'Quick-Make-Quick-Break' and 'Spring Return' operating mechanisms.

The cam switches offers versatile mounting options in addition to standard panel / flush mounting and other special features like single hole, door interlocking, padlock, lock and key for various needs.

The wide option such as type of knob, front plate color and customized marking on the marking plate eliminates the need of separate label on the panel.

Superior quality of engineering material and 'double butt' contacts with silver bimetal on copper / brass provide stable electrical performance. The high-grade engineering plastics with high tracking index like nylon, silicon and glass filled polyamide for the components ensures greater mechanical strength.

Advanced manufacturing processes for cam switch components under stringent quality conditions ensures durability, reliability and enhanced life.

AC Rotary Switches

General Construction

Series S, TP, RT and SL Cam Switches incorporate two double break silver alloy contacts per stage at 180 degree disposition. The AC Switches are 'Quick Make-Slow Break' with in-built latching device feature in cam design. The Cam Switches can be offered for DC applications with additional contacts in series according to the DC switching voltage and with suitable duration the DC Switches are 'Quick Make - Quick Break'.

Contacts : Double break type AgCdO
Insulation : Glass filled polyamide with high tracking index

Operating temp: $-15^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Operating frequency : 50 to 60 Hz Humidity : 95\%, Rh 48 hours

- Available from 6 to 400 A
- Open terminals for easy accessibility

TP Series Touch Proof

- Available from 6 to 20 A
- Finger protection (IP20)

- Available from 16 to 63 A
- Finger protection
- Convenient accessibility

SL Series Touch Proof \& Screwless Termination

- Available from 6 \& 10 A
- Finger protection (IP20)
- Cage clamp

AC Duty Rating
DC Duty Rating

Category	Typical AC Application	Category	Typical DC Application
AC-1	Non-Inductive or slightly inductive loads, Resistance furnaces	DC-1	Non-Inductive or slightly inductive loads, Resistance furnaces
AC-3	Squirrel-cage motors : starting switching off motors during running	DC-22	Switching of resistive loads, Including Control of DC electromagnets
AC-15	Control of AC electromagnetic loads	DC-13	Switching of motor loads or other
AC-21-A	Switching of resistive loads, Including moderate overloads (frequent switching)	DC-23	Highly inductive loads
AC-23-A	Switching of motor loads or other highly inductive loads (frequent switching)	---	----

AC Rotary Switches

Technical Data

IEC/EN Ratings

AC Rating Code	Unit	$\begin{aligned} & \text { S6 } \\ & \text { TP6 } \end{aligned}$	$\begin{aligned} & \text { S10 } \\ & \text { TP10 } \end{aligned}$	S16 TP16 RT16	$\mathrm{S} 20$ TP20 RT20	$\mathbf{S} 25$ RT25	S32 RT32	S40 RT40	S63 RT53	S80	S100	S125	S200
Rated Operational Voltage (Ue)	V	440	440	690	690	690	690	690	690	690	690	690	690
Rated Frequency	Hz	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60	50/60
Rated Impulse with stand Voltage (Uimp)	kV	4	4	6	6	6	6	6	6	6	6	6	6
Rated Operational Current (le) AC21/AC1	A	6	10	16	20	25	32	40	63	80	100	125	200
Rated Uninterrupted Current (Ith)	A	8	12	20	25	32	40	50	80	100	125	150	225
Rated Operational Power													
	kW	2.2	3	7.5	7.5	11	15	18.5	22	33	41	45	55
	A	--	--	13	13	19	26	32	38	57	71	78	95
AC3	kW	1.5	3	5.5	5.5	7.5	11	15	18.5	22	33	37	45
"3 Ph, 415 V "	A	--	--	10	10	13	19	26	32	38	57	64	78
Short Circuit Capacity													
Rated Fuse Short Circuit Current	kA	3	3	5	5	10	10	20	20	25	25	25	25
Fuse Size (Type gG/gM)	A	6	10	16	20	25	32	40	63	80	100	125	200
Terminal Cross Section													
Single / Multiple min	mm^{2}	0.7	0.7	1.5	1.5	1.5	2.5	2.5	4	6	10	10	10
max	mm^{2}	1.5	1.5	4	4	4	6	10	16	25	35	50	70
Fine strand min	mm^{2}	0.7	0.7	1	1	1	1.5	2.5	2.5	6	10	10	10
max	mm^{2}	1.5	1.5	2.5	2.5	2.5	4	6	10	16	25	35	50
Terminal Cross Section	Metric	M3.5	M3.5	M3.5	M3.5	M4	M4	M5	M5	2XM5	2XM5	2XM5	M10
Terminal Tightening Torque	Nm	0.8	0.8	0.8	0.8	1.2	1.2	2	2	2.5	2.5	2.5	2.5

Note : Rated Duty: 8 Hours, Installation, Operation and Maintenance Condition: Suitable for Environment A (for Industrial Application). Switch life under standard operating conditions: Mechanical 100,000 operations @ 300 cycles / hour, Electrical 10,000 operations at 100% rated duty for 120 cycles / hour.

CSA/UL Ratings

AC Rating Code	Unit	S6	S10	S16 TP16 RT16	S20 TP20 RT20	S25 RT25	$\begin{gathered} \text { S32 } \\ \text { RT32 } \end{gathered}$	S40	S63	S80	S100	S125	S200
Ampere Rating	A	6	10	15	20	20	30	40	55	80	100	100	175
Operational Voltage	V	460	460	600	600	600	600	600	600	600	600	600	600
HP Rating 1 Phase													
120 V	HP	0.25	0.33	0.33	0.33	1.5	1.5	2	3	-	-	-	-
240 V	HP	0.50	0.75	1	1	3	3	5	7.5	-	-	-	-
3 Phase													
120 V	HP	0.75	1	1.5	1.5	3	3	5	7.5	10	10	10	15
240 V	HP	1	1	3	3	7.5	7.5	10	15	20	20	20	25
480 V	HP	1	2	3	3	10	10	20	30	40	40	40	50
600 V	HP	-	-	5	5	15	15	24	40	50	50	50	50

Conformance to standards European : IEC-60947-1: 1988 IEC-60947-3: 1990 IEC-60947-5: 1992 Canadian : CSA 22.2 No. 14-2010 American : UL 508 (2009)

Note : AC4 rating = AC3 rating / 2 , Star Delta rating $=60 \%$ of $A C 3$ rating

AC Rotary Switches

Isolators - ON/OFF Switches

Isolators are ON-OFF Switches to isolate the power to a particular area of operation. Isolator Switch comes in a wide range from 1 Pole to 12 Poles. Isolators with spring return upto 4 Poles are available to energise circuits. Isolators with pre-close contacts are used for safety circuits and for connecting neutral and earth lines. Isolators are generally rated for AC1/AC21 while for motor applications they need to be rated for AC3/AC23 A duty.

Applications: Switching of main / control and instrumentation circuits motor
 ON-OFF and other special application circuits.

Connection Diagram

Stayput

Script Plate Marking	60 Degree	90 Degree	90 Degree Complete Rotation	
Description	Programme Code	Programme Code	Programme Code	No. of Stages
1 Pole	61001	61191	61195	1
2 Pole	61002	61192	61198	1
3 Pole	61003	61199	61197	2
4 Pole	61004	61194	61196	2
5 Pole	61005	-	-	3
6 Pole	61006	61906	-	3
7 Pole	61007	-	-	4
8 Pole	61008	-	-	4
9 Pole	61009	-	-	5
10 Pole	61010	-	-	5
11 Pole	61011	-	-	6
12 Pole	61011	-	-	6
Feasible Ampere Rating: 6, 10, 16, 25, 32, 40, 63, 80, 100,125, 200 \& 400 Amps				

Isolators with Preclose Contact

Spring Return Isolators 45 Degree

45 Degree Spring Return to OFF		$\int_{2}^{1} \int_{4}^{1} \int_{6}^{3} \int_{8}^{5}$
Description	Programme code	No. of Stages
1 Pole Spring Return	61351	1
2 Pole Spring Return	61352	1
3 Pole Spring Return	61353	2
4 Pole Spring Return	61354	2
Feasible Ampere Rating: $6,10,16,25,32,40 \& 63$ Amps		

AC Rotary Switches

Changeover Switches with OFF

Changeover Switches also called Double Throw Switches are available with OFF and without OFF. These are used to operate two different circuits with different number of inputs and outputs. Changeover Switches without Jumpers (potential free contacts) are used to connect two different circuits from two different sources with two different operating voltages or any other incompatible lines. All contacts by default are 'Break Before Make' (BBM) type to avoid overlapping of different circuits. However, for overlapping changeover contacts. 'Make Before Break' (MBB) type are offered against specific requirements.

Application: Power Supply to Generator Changeover, Auto / Manual Changeover, Standby / Remote Changeover and other special application circuits. Mainly used in Distribution Panels, UPS etc.

Connection Diagram

Stayput

60 Degree			90 Degree	
Description	Programme code	No. of Stages	Description	Programme code
1 Pole	61025	1	1 Pole	61151
2 Pole	61026	2	2 Pole	61152
3 Pole	61027	3	3 Pole	61153
4 Pole	61028	4	4 Pole	61154
5 Pole	61029	5	-	-
6 Pole	61030	6	-	-
7 Pole	61031	7	-	-
8 Pole	61032	8	-	-
Feasible Ampere Rating: 6, 10, 16, 25, 32, 40, 63, 80, 100, 125, 200 \& 400 Amps				

Spring Return

45 Degree Spring Return to 0		Spring Return from 1 to 0		
Description	Programme code	No. of Stages	Description	Programme code
1 Pole	61625	1	1 Pole	61364
2 Pole	61362	2	2 Pole	61365
3 Pole	61363	3	3 Pole	61369
Feasible Ampere Rating: 6, 10, 16, 25, 32, 40 \& 63 Amps				

Without Jumper

60 Degree Stayput without Jumper			45 Degree Spring return without Jumper	
Description	Programme code	No. of Stages	Description	Programme code
1 Pole without jumper	62625	1	1 Pole without jumper	61761
2 Pole without jumper	61626	2	2 Pole without jumper	61762
3 Pole without jumper	61627	3	-	-
Feasible Ampere Rating: $6,10,16,25,32,40,63,80,100,125,200 \& 400$ Amps			Feasible Ampere Rating: $6,10,16,25,32,40 \& 63$ Amps	

AC Rotary Switches

Changeover Programmes without OFF

Connection Diagram

Stayput

90 Degree Complete Rotation											

Spring Return

45 Degree Spring Return			
Description	Programme code		
1 Pole	61371		

Stayput Without Jumper

90 Degree Stayput without Jumper			45 Degree Spring return without Jumper	
Θ θ				
Description	Programme code	No. of Stages	Description	Programme code
1 Pole without jumper	61637	1	1 Pole without jumper	61771
2 Pole without jumper	61638	2	-	-
3 Pole without jumper	61639	3	-	-
4 Pole without jumper	61640	4	-	-
Feasible Ampere Rating: Feasible Ampere Rating: $6,10,16,25,32,40,63,80,100,125,200 \& 400 \mathrm{Amps}$ $6,10,16,25,40 \& 63 \mathrm{Amps}$				

AC Rotary Switches

Multistep (Pole-Way) Switches with OFF

These switches are also called as Pole-Way switches, they are available with OFF \& without OFF. Multistep does the function of connecting different circuits to a common supply or vice versa. 1 pole, 2 pole \& 3 pole are popular for $1 \mathrm{Ph}, 2 \mathrm{Ph}$ \& 3 Ph supply.

Application : Typical usage tap changing switch for Transformer / Stabilizer and other special application circuits.

Prog No.	Description	Script Pla	Marking	Connecting Diagram / Terminal Marking	No. of Stages
61059	1 Pole-2 Way		2 Way - 60°		1
61079	2 Pole-2 Way				2
61099	3 Pole-2 Way				3
61130	4 Pole-2 Way				4
61060	1 Pole-3 Way		3 Way - 90°		2
61080	2 Pole-3 Way				3
61100	3 Pole-3 Way				5
61131	4 Pole-3 Way				6
61061	1 Pole-4 Way		4 Way - $60{ }^{\circ}$		2
61081	2 Pole-4 Way				4
61101	3 Pole-4 Way				6
61132	4 Pole-4 Way				8
61062	1 Pole-5 Way		$5 \text { Way }-60^{\circ}$		3
61082	2 Pole-5 Way				5
61102	3 Pole-5 Way				8
61063	1 Pole-6 Way		6 Way - 45°		3
61083	2 Pole-6 Way				6
61103	3 Pole-6 Way				9
61064	1 Pole-7 Way		7 Way - 45°		4
61084	2 Pole-7 Way				7
61065	1 Pole-8 Way		8 Way - 30°		4
61066	1 Pole-9 Way		9 Way - 30°		5
61067	1 Pole-10 Way		10 Way - 30°		5
61068	1 Pole-11 Way		11 Way-30		6

Feasible ampere ratings: $6,10,16,25,32,40,63,80,100,125 \& 200 \mathrm{Amps}$

AC Rotary Switches

Multistep (Pole-Way) Switches without OFF

Multistep Switches Without Jumper

AC Rotary Switches

Instrumentation Selector Switches

With the help of these switches we can:

- Measure Currents in different circuit with a Current Transformer, a single Ammeter \& a switch
- Measure Voltages between Phases and Phase \& Neutral with one voltmeter \& a switch
- Measure Voltages \& Currents of a circuit with one Voltmeter, one Ammeter and a single switch

Voltmeter Selector Switches

Prog No.	Description	Script Plate Marking	Connecting Diagram / Terminal Marking	No. of Stages
61312	3 Ph Line to Line			2
61313	3 Ph Line to Line \& Line to Neutral			3
61314	3 Ph Line to Line Line to Neutral \& without OFF			3
61317	3 Ph Line to Line \& L1 to N			3
61318	3 Ph Line to Line 2 Sources			4
61311	3 Ph Line to Neutral			2
61319	3 Ph Line to Line without OFF			2
Feasible Ampere Rating: 6, 10, 16, 25 \& 32 Amps				

Voltmeter \& Ammeter Selector Switches

Prog No.	Description	Script Plate Marking	Connecting Diagram / Terminal Marking	No. of Stages
61336	3 Voltages Line - Line \& 3 Currents			5
61337	4 Voltages \& 3 Currents			6
61338	3 Voltages Line to Neutral \& 3 Currents			5
Feasible Ampere Ratings: 6, 10, 16, 25 \& 32 Amps				

AC Rotary Switches

Instrumentation Selector Switches
Ammeter Selector Switches

Prog No.	Description	Script Plate Marking	Connecting Diagram / Terminal Marking	No. of Stages
61325	1 Pole-3 Transformer with OFF			3
61321	1 Pole-1 Transformer			1
61331	1 Pole-2 Transformer			2
61384	1 Pole-3 Transformer without OFF		$\mathrm{A}_{\mathrm{o}} \downarrow$ (A) A	3
61326	1 Pole-4 Transformer with OFF		A (A) $\quad \mathrm{A}$	4
61327	2 Pole-2 Transformer with OFF			3
61328	2 Pole-3 Transformer with OFF			5
61329	2 Pole-3 Transformer without OFF			5
61330	2 Pole-4 Transformer without OFF		${ }^{A^{2}}-(A)-C^{A}$	6
71000	Direct Ammeter Selector without Current Transformer			5

Power Factor Meter Switches

73078	One Current Transformer One Voltage Transformer			2
73079	Two Current Transformer			2

Feasible ampere rating: 6,10,16,20,25 and 32

Wattmeter Switch

73071	Two watt meter Method				5
Feasible Ampere Rating: 10 \& 16 Amps					

AC Rotary Switches

Motor Control Switches

These switches directly operate the motor with AC3 or AC4 Duty Rating. They are mainly used for motor Forward - Reversing, Star-Delta, two speed Forward - Reversing and other special switches designed to operate with contactor with built-in tripping feature in the event of power failure and overload.

Motor Reversing Switches

Feasible ampere rating: 6,10,16,20,25 and 32

Motor Switches / Star-Delta Switches

Prog No.	Description	Script Plate Marking	Connecting Diagram / Terminal Marking	No. of Stages
61200	OFF-STAR-DELTA			4
61201	Spring Return from STAR to OFF			4
61203	Standard			5
61239	Star Delta with Sequence Locking \& LMD Contacts			3
61240	For use with Contactors			4
Feasible Ampere Rating: 6, 10, 16, 25, 32, 40 \& 63 Amps				

AC Rotary Switches

Motor Control Switches
Motor Switches / Multi Speed Switches

Prog No.	Description	Script Plate Marking	Connecting Diagram / Terminal Marking	No. of Stages
61212	2 Speed in one direction Single Winding			4
61213	2 Speed with Center OFF Single Winding			4
61215	2 Speed Single Winding for use with Contactors			5
61217	$\begin{gathered} 2 \text { Speed } \\ \text { Single Winding } \\ \text { Forwarding/Reversing } \end{gathered}$			6
61219	2 Speed 2 Separate Windings			3
61226	3 Speed 2 Windings (O-A-B-A)			6
61243	3 Speed 2 Windings (O-A-B-B)			6
Feasible Ampere Rating: 6, 10, 16, 25, 32, 40 \& 63 Amps				

Motor Switches - Start \& Run Switches

Prog No.	Description	Script Plate Marking	Connecting Diagram / Terminal Marking	No. of Stages
61208	Split-phase Start	Spring return from start to "0"		2
61209	Split-phase Start Reversing	Spring return from start		3
61270	Split-phase Start Reversing Switching			3
Feasible Ampere rating: 16, 20, 25 and 32 Amps and for spring return switches and for stay put 16A and above				

AC Rotary Switches

Gang Switches

These switches are called Gang Switches, as they increase the capacity of circuits by ganging. They are used to derive different circuit capacity by serial or parallel connection. The power of Battery supply can be increased through serial connection. The power of resistor can be increased through parallel connection.
Applications: In Railway coaches for controlling the Battery supply, in Dept of Telecommunication panels and special application circuits.

Prog No.	Description	Script Plate Marking	Connecting Diagram / Terminal Marking	No. of Stages
61109	2 Gang with OFF 1 Pole	2 Gang		1
61117	2 Gang with OFF 2 Pole		2 Pole	2
61111	2 Gang with OFF 3 Pole	60°	3 Pole	3
61110	3 Gang with OFF 1 Pole	3 Gang		2
61118	3 Gang with OFF 2 Pole		3 Pole	3
61112	3 Gang with OFF 3 Pole	90°	1 Pole	5
61113	2 Gang, Series with OFF 1 Pole	2 Gang Series		1
61115	2 Gang, Series with OFF 2 Pole			2
61114	2 Gang, Series with OFF 3 Pole			3
61116	2 Gang Series-Parallel with OFF 2 Pole	2 Gang Series Parallel 90°		2
Feasible Ampere Rating: 6, 10, 16, 25, 32, 40 \& 63 Amps				

AC Rotary Switches

Control Switches

Control Switches are used to energies contactors for controlling motor operations. Most of the Switches are 'Spring Return' type for latching of the circuit with NO contact and facilitate tripping by the tripping device.
Applications: Control Switches offer unique alternative to multiple "Push Button Stations", when one Switch controls instead of many Push Buttons. Control Switch with many positions are offered for a suitable combination.

Prog No.	Description	Script Plate Marking	Connecting Diagram / Terminal Marking	No. of Stages
61300	1 Pole STOP-START with Spring Return	$\theta_{\operatorname{stan} 1}^{n} \sqrt{\text { strop }}$		1
61388	2 Pole STOP-START with Spring Return	\checkmark		2
61301 61701	1 Pole STOP-START with Spring Return from START to RUN Without Jumper	spring return from start to "1"		1
61307 61707	STOP-START Switch with Spring Return to run for 2 units Without Jumper	spring return from start		2
61366	Contactor Control with Spring Return to OFF			2
61271	Motor Voltage Control Switch			2
Feasible Ampere Rating: $6,10,16,25,32,40 \& 63$ Amps				

AC Rotary Switches

Mounting Feasibility

Mounting Code	Description	Feasibility					
		6/10A	16/20A	25/32A	40/63A	$\begin{gathered} 80 / 100 / \\ 125 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 200 / \\ & 400 A \end{aligned}$
B03	Front Mounting, Standard Mounting plate		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B13	Front Mounting with next size plate	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B00	Front Mounting 48x48 plate for 25/32 A and 64x64 plate for $40 / 63 \mathrm{~A}$			\checkmark	\checkmark		
B19	Single Hole Mounting 32×32 plate for 6/10 A only 48×48 Plate for 16-32 A	\checkmark	\checkmark	\checkmark			
B14	Single Hole Mounting 48×48 plate for $6 / 10 \mathrm{~A}$	\checkmark					
B33	Front Mounting with Round Padlock for 2 Position (for Isolators)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B30	Front Mounting with Rectangular Padlock 2 Position (for Isolators)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B63	Key Lockable type (Handle/Knob)		\checkmark	\checkmark	\checkmark		
B90	Center Key Lock (Pistol grip Handle in black color only)		\checkmark	\checkmark			
B02	Rear/(Back/Base) Mounting	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B21	DIN Rail Mounting on 35 mm Rail 6-32 Amps	\checkmark	\checkmark	\checkmark			\checkmark
B32	Rear/Base Mounting, Door Interlock + Rectangular Padlock (B30+B42)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B34	Rear/Base Mounting, Door Interlock + Round Padlock (B33+B42)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B41	Rear Mounting with Clutch Mechanism on Door (Door Open in all position without Interlock)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B42	Rear Mounting with Interlock Mechanism on Door		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
F47	Door Clutch, Mounting Plate at front		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
B17	ABS Enclosure Max stages	upto 4	upto 3	upto 5	upto 5		
B31	ABS Enclosure with Round Padlock (B33+B17) Max stages		upto 2	upto 2	upto 2		
M17	Metal Enclosure Max stages	upto 4	upto 4	upto 3			\checkmark
A17	Aluminium Enclosure Max stages	upto 4	upto 3	upto 2			
B40	Single Hole Mounting with Padlock 48x48 Plate For 16-32 A		\checkmark	\checkmark			
B43	Single Hole Mounting with Center key 48×48 Plate for 16-32 A		\checkmark	\checkmark			
B45	Single Hole Mounting with Round Ring with Knob 16 A-32 A		\checkmark	\checkmark			

AC Rotary Switches

Mountings

B03

IP55 protection from front

Features:

- Standard 4 Hole front panel mounting
- Knob / Handle operable
- Suitable for all switching angles and Spring Return Switches
- Front assembly in 4 different Colors, Yellow / Red, Grey / Black, Black/Black and aluminium finish

B19/B14

IP65 protection from front

Features:

- Single hole mounting with std dia 22.5 mm
- Eliminates the need for screws / hardware for Quick-Fit single hole panel fixing
- Easy termination
- Available upto 32 A

All dimensions in mm.

Front Mounting

$6 / 10$ Amps by default B13 mounting $48 \times 48 \mathrm{~mm}$ only

Quote B13 for next bigger size front plate

Type	A	B1	B2	B3	D	F	S	W	Max
S6/S10/TP6/TP10/SL6/SL10 (48x48 mm) - B13	28	36	12	4.5	38	48	9.5	18.5	12
S16/TP16/RT16/TP20/RT20	28	36	12	4.5	58	48	12	26	21
S25/S32/RT25/RT32	35	48	12	5.5	64	64	15	27	18
S40/S63/RT40/RT63	44	68	15	5.5	95	88	21	33	12
S80/S100/S125	44	68	15	5.5	118	88	26	40	10
S200	44	68	15	5.5	99	88	32	40	10
S400	44	68	15	5.5	99	88	64	40	4

Quote B14 for next bigger size front plate (available for 6/10 Amps. only)

Type	Code	A	D	F	S	H	W	Max
S6/S10/TP6/TP10	B19	25	38	32	9.5	13.5	28.5	10
	B14	27	38	48	9.5	13.5	28.5	10
S16/TP16/RT16/TP20/RT20	B19	32	58	48	12	13	36	8
S25/S32/RT25/RT32	B19	32	64	48	15	13	37	6

AC Rotary Switches

Mountings

B30

IP55 protection from front

Features:

- Four hole mounting padlockable mounting
- Secure with max four padlocks in OFF position
- Prevents switching only
- Unauthorised personnel
- suitable for switches with 90° switching angle
- Available in Yellow/Red only

Length $L=$ No of Stages $\times S+W$

Type	A	B1	B2	D	F1	F2	F3	H	S	W	Max
S16/TP16/RT16/TP20/RT20	35	48	12	58	76	104	12	23	12	26	6
S25/S32/RT25/RT32	35	48	12	64	76	104	12	23	15	27	6
S40/S63/RT40/RT63	44	68	15	95	99	128	15	25	21	33	6
S80/S100/S125	44	68	15	118	99	128	15	25	26	40	6
S200	44	68	15	99	99	128	15	25	32	40	6
S400	44	68	15	99	99	128	15	25	64	40	3

B33

IP55 protection from front

Features:

- Four hole round padlockable mounting
- Secure with max. 3 padlocks in OFF position prevents switching ON by unauthorized personnel
- Suitable for switches only with 90° switching angle

Pad Lockable Mounting

Length $L=$ No of Stages $\times S+W$
F-48 mm with B1-36 mm also available on request for 16, 25, 32 Amps

Type	A	B1	B2	B3	D	F	S	W	Max
S16/TP16/RT16/TP20/RT20	44	36	12	4.5	58	65	12	26	6
S25/S32/RT25/RT32	44	36	12	4.5	64	65	15	27	6
S40/S63/RT40/RT63	48	68	15	5.5	95	95	21	33	6
S80/S100/S125	48	68	15	5.5	118	95	26	40	6
S200	48	68	15	5.5	99	95	32	40	6
S400	48	68	15	5.5	99	95	64	40	3

AC Rotary Switches

Mountings

B63

IP40 protection from front

Features:

- Knob / Handle operatable Switch with key lockable assembly prevents switching by unauthorized personnel
- Key lock / Key removable only in OFF position by default, key

Key Lockable

Length L = No of Stages $\times S+W$

Type	A	B2	B4	B5	D	F	S	W	Max
S16/TP16/RT16/TP20/RT20	35	13	23	43.5	58	64	12	45	21
S25/S32/RT25/RT32	35	13	23	43.5	64	64	15	45	15
S40/S63/RT40/RT63	44	13	23	43.5	95	64	21	47	10

lockable and removable in any other position to be specified

- Lock assembly can also be provided on any side
- Common key for all Switches

B17

IP55
Features:

- Switch mounted in ABS enclosure
- Provides protection from dust and hazardous material with regular Front Plate and Knob
- Suitable for all switching angles
- Knob / Handle operable
- IP65 can be given on request

Quote B31 (B17 Enclosure and B33 Round Padlock) only for Isolator ON/OFF Switches

All dimensions in mm.

Enclosure

LR/HR Model

SM, M

Type	Box Type	A	L	B	D	E	G	Stages
S6/S10/TP6/TP10	SM	28	125	100	72	80	115	4
S16/TP16/RT16	SM	28	125	100	72	80	115	3
S16/TP16/RT16	M	28	175	125	90	105	155	4
S25/S32/RT25/RT32	SM	35	125	100	72	80	115	2
S25/S32/RT25/RT32	M	35	175	125	90	105	155	4
S40/S63/RT40/RT63	M	44	175	125	90	105	155	2

Type	Code	A	L	B	D	E	G	H	I	J	Stages
S25/S32/RT25/RT32	LR	38	130	115	161	87	102	100	-	-	5
S40/S63/RT40/RT63	HR	46	180	155	220	120	100	-	122	147	5

AC Rotary Switches

Mountings

M17

Features:

- Switches mounted in sheet metal enclosures provide protection from hazardous environment
- Knob / Handle operatable
- Suitable for Switches upto 32 A
- Ideal for forward reverse motor application

Metal Enclosure

Isolators by default with knob only

Type	A1	A2	A3	D1	D2	D3	Max
S6/S10/TP6/TP10	70	60	6	85	89	98	4
S16/TP16/RT16/TP20/RT20	70	60	6	85	89	98	4
S25/S32/RT25/RT32	70	60	6	85	89	98	4
16A Forward/OFF/Reverse Only	70	60	5	75	75	110	-

B02

Features:

- Four hole base mounted on rear side of the panel
- Knob / Handle operable
- Can also be used for panel / door mounting

Rear Mounting

Type	A	A1	B1	B2	B3	F	B	G	S	W	Max
S6/S10/TP6/TP10	28	36	36	9	4.5	48	48	4.5	9.5	26	12
S16/TP16/RT16/TP20/RT20	28	36	48	12	4.5	48	64	3.5	12	30	12
S25/S32/RT25/RT32	35	48	48	12	4.5	64	64	3.5	15	31	8
S40/S63/RT40/RT63	43	68	68	15	5.5	88	88	5	21	41	6
S80/S100/S125	43	68	100	15	5.5	88	124	5	26	48	6
S200	43	68	83	15	5.5	88	104	5	32	48	6
S400	43	68	83	15	5.5	88	104	8	64	48	3

AC Rotary Switches

Mountings

B21

Length $L=$ No of Stages $\times S+W$

Features:

- Snap mounting base on DIN Rail 35 mm and 1.2 mm thick or two hole rear mounting
- Provides easy termination

Type	A	B1	B2	D	F	S	W	Max
S6/S10/TP6/TP10	28	36	9	38	48	9.5	28.5	10
S16/TP16/RT16/TP20/RT20	28	36	12	58	48	12	37	12
S25/S32/RT25/RT32	35	48	12	64	64	15	38	8

- Can also be used for panel / door mounting

B42

IP55 protection from front

Features:

- Mounted on rear side of the panel and operated from the front door
- Door inter / lockable mechanism and panel door opens only in OFF position
- Provides safety feature
- Knob / Handle operable

Door Interlock

Length $L=$ No of Stages $\times S+W$ $\mathrm{L}=\mathrm{L} 1+\mathrm{C}$

Quote B41 for door to be opened in both positions without door interlock

Type	A	A1	A2	A3	B1	F	B	G	C	N	S	W	Max
S16/TP16/RT16 TP20/RT20	35	48	4.5	15	48	64	64	3.5	25	22	12	54	8
S25/S32/RT25/RT32	35	48	4.5	15	48	64	64	3.5	25	22	15	57	8
S40/S63/RT40/RT63	44	68	5.5	18	83	88	104	5	27	26	21	66	6
S80/S100/S125	44	68	5.5	18	100	88	124	5	27	26	26	72	6
S200	44	68	5.5	18	83	88	104	5	27	26	32	72	6
S400	44	68	5.5	18	83	88	104	8	27	26	64	72	3

AC Rotary Switches

Mountings

B03

Standard Mounting-Spring Return

(Square Latching Mechanism)

IP55 protection from front

Features:

- Standard 4 hole front panel mounting pistol grip handle operable
- Suitable for $45^{\circ} / 60^{\circ}$ only
- Advanced special star/spring design on latching provides guaranteed spring return operation

For B03 without key \& for B90 with center key

Type	L (No. of Stages)						
	1	2	3	4	5	6	7
S16/TP16/RT16 (B13)	52.5	64.5	76.5	88.5	100.5	112.5	124.5
S25/S32/RT25/RT32	55.5	70.5	85.5	100.5	115.5	130.5	145.5

AC Rotary Switches

Knobs and Handles

TD - Tear Drop

Code - TD	A	B	C	D
S6/S10/TP6/TP10	27	41	25	21
S16/TP16/RT16	27	41	25	21
S25/S32/RT25/RT32	36	51	31	25
S25/S32/RT25/RT32	50	70	42	33

PG - Pistol Grip Handle

Code - PG	A	B	C	D
S16/TP16/RT16/TP20/RT20	36	102	82	56
S25/S32/RT25/RT32	36	102	82	56
S40/S63	36	102	82	56

Knobs / Handle Colours ■ RED BLACK
FL - Flag Knob

Code - FL	A	B	C	D
S6/S10/TP6/TP10	17	23	13.75	19
S16/TP16/RT16	27	38	24	23
S25/S32/RT25/RT32	27	38	24	23
S25/S32/RT25/RT32	50	68	42.5	32

BG - Ball Grip Handle

Code - BG	A	B	C	D
S16/TP16/RT16/TP20/RT 20	36	100	67	45
S25/S32/RT25/RT32	36	100	67	45
S40/S63	36	100	67	45

LV - Lever Handle

Code - LV	A	B	C	D
S80/S100/S125	50	115	90	45
S200/S400	50	115	90	45

AC Rotary Switches

Accessories

Extended Terminals

Extended Terminals - Always mounted on Switch

Supplied as optional for S 40 and S 63 on request Push on Terminals

Front Plate

Standard Style	Frame Size	Bigger Style
Current Ratings 6/10 Amps		Current Ratings
16/20 Amps		6/10 Amps
25/32 Amps		16/20 Amps
S40 Amps \& above		25/32 Amps
-		S40 Amps \& above

Protection Covers (Shrouds)

S-Series

Type	ØD	H	
		3 Stage	
S6/S10	$43^{ \pm 0.2}$	25	34.5
S16/S25/S32	$69^{ \pm 0.2}$	35	50
S40/S63	$95^{ \pm 0.2}$	54	75

Other special size mounting plates at Front or Rear can be supplied against requirement.

Rectangular

Type	L	D	H	No. of Stages
S40/S63	210	200	73	2
	210	200	94	3
S80 to S200	175	110	115	2
	210	200	100	2

In case of fixing at site use supplied hardware only.

Customised Programme Formation

The switch design and construction gives flexibility for making customized programme within a very short period. Basically an engineer trying to specify the customized programme should concentrate on the following points:
(a) Number of operating positions of switch handle.
(b) Total number of Contacts required.
(c) Contact closing sequence of all the contacts required in various positions of handle.

Note: Each position should be identified and Script plate marking required in those positions should be mentioned.
(d) The latching angle (angle between positions) Standard latching / switching angles are $60^{\circ}, 90^{\circ}, 45^{\circ} \& 30^{\circ}$. Spring return are also possible for $45^{\circ} \& 90^{\circ}$ switching angle.
(e) Total number of contacts can be decided based on the actual need. You may arrange the contacts to your convenience and number them as $1 / 2,3 / 4,5 / 6 \ldots$ etc.. While making the switch, we may rearrange the contacts to use solid jumpers so as to avoid loose wire jumpers.
(f) Fill up the programme sheet by marking ' X ' at places where contacts have to Close (NC). Also ensure to specify the Ampere Rating, Mounting Style, Switching angle, Script Plate markings, Terminal marking \& Lockable Position (If any).

For example, refer the sample customized programme sheet of a bedroom switch having 3 contacts controlling a tube-light, fan \& night lamp.

Note: The above construction carries a five digit number starting with ($7 x x x x$) alloted by us .This number alone is sufficient for future correspondence \& further ordering.

AC Rotary Switches

AC Rotary Switches

Ordering Code for Rotary Switches

1. Programme Code

Programme	Programme Code
Isolators	Page 29
Changeovers with OFF	Page 30
Changeovers without OFF	Page 31
Multistep Switches with OFF	Page 32
Multistep Switches without OFF	Page 33
Instrumentation Switches	Page 34
Motor Control Switches	Page 36
Gang Switches	Page 38
Control Switches	Page 39

4. Mounting Style

2. Type Selection

3. Ampere Selection

Ampere	Code	Ampere	Code
6	\mathbf{A}	100	\mathbf{K}
10	B	125	\mathbf{L}
16	\mathbf{C}	160	\mathbf{M}
20	D	200	\mathbf{N}
25	\mathbf{E}	250	\mathbf{O}
32	\mathbf{F}	300	\mathbf{P}
40	\mathbf{G}	400	\mathbf{Q}
50	\mathbf{H}	500	\mathbf{R}
63	\mathbf{I}	600	\mathbf{S}
80	\mathbf{J}	800	\mathbf{T}

B03/B13
Standard Mounting

B17
ABS Enclosure

B19/B14
Single Hole Mounting

M17
Metal Enclosure

B33
Round Padlock

B02
Rear/Base Mounting

B30
Rectangular Padlock

B21

B63
Key Lockable Type

B42
DIN Rail Mounting Rear Mounting with Door Interlock

5. Knob / Handle Selection

6. Color Combination Selection Table

AC Rotary Switches

Breaker Control Switches

Under this 3 types are widely used
a) Spring return
b) Lost Motion contact (LMD)
c) Sequence Locking (Two consecutive movement in one direction arrested)

All the above can also be with external KEY and LOCK arrangement.
a) In SPRING RETURN type the handle will always returns to NEUTRAL position and does not stay in other two positions. When the handle returns to Neutral, Main/TRIP contact will be in open condition.
b) In LMD, the contact block is divided into two, as main contacts and LMD contacts. LMD contacts will be closed when the handle moves to CLOSE side/TRIP side and the contact closing will be retained even though the handle is returned to NEUTRAL by virtue of spring return nature. When the handle is rotated in opposite direction only then LMD contact will open.
c) Thus the LMD mechanism enables the Switch to have a memory feature of the previous operation, which is considered to be very essential for circuit breaker applications.

- Spring Return to Neutral Position from both sides
- Memory feature of previous operation (LMD)
- Permits only one Close operation (sequential lock)

In case of sequence lock, it acts like a mechanical interlock in the switch. It does not permit two consecutive 'CLOSE' operations. Turn the handle to CLOSE position and leave it, the handle will be back to NEUTRAL due to spring return action. The handle movement on the CLOSE side will be locked. When the handle is moved to TRIP position only then rotation to CLOSE position is permitted.

As indicated, all the above feature models can also be supported with external lock \& key arrangement with key lockable and removable only at NEUTRAL position. Handle shall not be turned when the key is in lock condition.

Description		Unit	S25	S32
Rated Operational Voltage	Ue	V AC	690	690
		V DC	250	250
Resistance to Surge Voltage	Uimp	kV	6	6
Rated Uninterrupted Current	Ith	A	32	40
Rated Operational Current Pilot Duty AC15 Ie				
220-240 V AC		A	8	14
380-440 V AC		A	5	6
Short Circuit Protection HRC Fuse Size		A	25	32
Rated Short Circuit		kA	10	10
Terminal Cross Section				
Rigid Wire	min	mm^{2}	1.5	2.5
	max		4	6
Flexible Wire	min	mm^{2}	1	1.5
	max		2.5	4
Terminal Screw			M4	M4
Terminal Tightening Torque			1.2 Nm	1.2 Nm

Voltage	No. of Contacts in series	S25/SG 25				S32/SG32			
		Resistive Amps	Inductive L/R Amps			Resistive Amps	Inductive L/R Amps		
			$\begin{gathered} 10 \\ \mathrm{msec} \end{gathered}$	$\stackrel{20}{\mathrm{msec}}$	$\begin{gathered} 40 \\ \mathrm{msec} \end{gathered}$		$\begin{gathered} 10 \\ \text { msec } \end{gathered}$	$\stackrel{20}{\text { msec }}$	$\begin{gathered} 40 \\ \mathrm{msec} \end{gathered}$
50 V	1	20	20	15	6	25	25	18	8
	2	-	-	20	14	-	-	25	18
	3	-	-	-	20	-	-	-	25
125 V	1	3	2.5	1.5	1.0	5	3	2	1.2
	2	20	15	10	5	25	18	12	6
	3	-	20	20	10	-	25	v	12
250 V	1	1.0	0.5	0.3	0.2	1.2	0.6	0.4	0.3
	2	5	2	1.0	0.5	6	2.5	1.2	0.6
	3	20	10	4	1	25	12	5	1.2

General
Endurance :
Mechanical
100,000 operations at 300 cycles/hour

Electrical

10,000 operations at 120 cycles/hour Operational Temperature $25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, frequency upto 5 kHz

AC Rotary Switches

Mounting Styles

B90

Shorter handle length also available on request

Type	L (No. of Stages)						X * LMD	Y * Sequential Lock	
S25/S32	1	2	3	4	5	6	7		
	53	68	83	98	113	128	143	15	27.5

*LMD Dimension ' X ' to be added
*Sequential Lock Dimension ' Y ' to be added

Breaker control switch ordering code

Rating	Contact Arrangement	Mounting Type	Cat. No.
$25 A$	$1 N O+1 N C$	Standard	73257 SEB03PGGB
$25 A$	$2 N O+2 N C$	Standard	$72009 S E B 03 P G B B$
$25 A$	$2 N O+2 N C$	Standard	$72009 S E B 03 P G G B$
$25 A$	$2 N O+2 N C$	Standard	$72009 S E B 03 P G Y R$
$25 A$	$1 N O+1 N C$	Barrel Lock	$73257 S E B 90 P G B B$
$25 A$	$1 N O+1 N C$	Standard	$73257 S E B 03 P G Y R$
$25 A$	$2 N O+2 N C$	Barrel Lock	$72009 G E B 90 P G B B$
$25 A$	$2 N O+2 N C$	Barrel Lock	$72009 S E B 90 P G B B$

Other option such as sequence inter lock (SIL) \& lost motion device (IMD) available on request.

AC Rotary Switches

Installation Procedure

Cam Operated Rotary Switch

Breaker Control Switch

DC Rotary Switches

DC Rotary Switches

Construction and Features

D16 - D63
D Series Switches are designed for DC switching applications. These switches are constructed using snap action mechanism which provides 'Quick Make Quick Break' of contacts which is essential for DC switching. The contacts are of AgCdO , double break and butt type housed in a glass filled polyamide contact stage and are operated through cams for higher electrical endurance and smooth operation.

Suitable for 90 and 60 degree switching programmes and applicable for both AC and DC switching. Suitable switching programmes for Isolator, Changeover, Multistep and Gang Switches etc. are offered.

DC switches are CPRI tested and RDSO approved.

DC Switches D100 A - D500 A

Features:

- Housing made up of SMC material for rigidity and higher mechanical strength
- 'Wiping contacts' operations helps in dust free \& self cleaning concepts
- Extended terminals for Bus bar / Aluminium cable connections
- Capstone handle operation for better leverage

Applications:

- D40R - Railway coaches lighting \& fan circuits switching
- All DC power circuits - Railways, Telecommunications \& Power plants
- Battery charging equipment

DC Rotary Switches

D16-D63

Type	B1	B2	B3	D	F	S
D16	48	12	5.5	50	64	12
D25/D32	48	12	5.5	50	64	15
D40/D63	68	15	5.5	70	88	21

Stages		1	2	3	4	5	6	7	8	9	10	11	12
Length Lin mm	D16	62	74	86	98	110	122	134	146	158	170	182	194
	D25/32	65	80	95	110	125	140	155	170	185	200	215	230
	D40/63	69	90	111	132	153	174	195	216	237	258	279	300

D40 R

Type	\mathbf{S}	S1	S2	Length L							
				$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	
D40	10	30.5	15	55.5	65.5	75.5	85.5	95.5	105.5	115.5	125.5

L No. of Stages $\times S+(S+S)$

D100

Type	\mathbf{S}	S1	S2	Length L						
				$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
D100	32	32	15	112	144	176	208	240	272	304

All dimensions in mm.
D200-D500

Type	Length L					
		$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
D200-D500		117	139	161	183	205

D100 with Door Interlock

Type	S	\mathbf{N} S1	$\mathbf{S 2}$	Length L							
D100	32	35	15	210	242	274	306	338	370	402	434

D200-D500 with Door Interlock

Type	S	Length L				
		$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
D200-D500		197	219	241	263	285

Load Break Switches

Load Break Switches

General

Load Break Switches comply with the latest specifications for modern low voltage devices.

Outstanding electrical characteristics of LB Switches with compact design, contribute to space saving installation and operational convenience.

Basic construction and design of the switch makes it compact, safe and highly reliable.
The switch uses polyamide glass filled material, having excellent track resistance (CTI) for insulation to prevent flashover between phases in the most severe conditions.

The special contact design and configuration makes the switch highly reliable to withstand high short circuit currents.

Features:

- Double break contracts
- Polycarbonate shroud for wired terminal protection is included
- Excellent switching and high short circuit capacity
- Compact and reliable
- Easy installation
- Versatile mounting options, i.e. front mounting, rear mounting DIN 35 and enclosure mounting
- Quick, simple and convenient, dia. 22.5 mm single hole mounting is offered for 16A/20A switches with padlocking option
- Finger protection - IP 20
- Terminal screws with fixed clamp for easy wiring
- Add-on main/neutral/auxiliary contacts can be mounted on both sides of the switch at site
- 4th Pole addition is possible at site

Applications:

- Isolator
- Motor Start and Stop
- Manual Motor controller as Motor Disconnect
- Main Switch
- Emergency ON-OFF
- Control Switch
- Changeover Switch

Technical Data

UL Standard	UL508						LB240	LB263	LB4080	LB4100	LB4125
European Standard	IEC60947-3, EN60947-3										
Data	Measure	Switch Code	LB116	LB120	LB225	LB232					
Rated Operational Voltage, U_{e}											
IEC/EN	Volts	V	690	690	690	690	690	690	690	690	690
UL	Volts	V	600	600	600	600	600	600	600	600	600
Main Switch: Isolating Voltage upto	Volts	V	750	750	750	750	750	750	750	750	750
Resistance to Surge Pulse Voltage, $\mathrm{U}_{\text {imp }}$	Volts	kV	6	6	6	6	6	6	6	6	6
Rated Uninterrupted current, lu	Amp	A	16	20	25	32	40	63	80	100	125
Rated Uninterrupted current, le											
IEC/EN											
AC 22	Amp	A	16	20	25	32	40	63	80	100	125
AC-21A	Amp	A	20	25	32	40	63	80	80	100	125
AC-1	Amp	A	20	25	32	40	63	80	80	100	125
Rated Operational power at 50 to 60 Hz											
AC-23A IEC/EN											
3 Phase, 3 Pole	220-240V	kW	7.5	7.5	11	15	22	30	37	44	60
	$380-440 \mathrm{~V}$	kW	15	15	22	22	45	45	90	90	90
	500-690V	kW	15	15	22	22	45	45	90	90	90
AC-3 IEC/EN											
3 Phase, 3 Pole	220-240V	kW	4	5.5	8	11	15	22	30	37	44
	$380-440 \mathrm{~V}$	kW	5.5	11	15	15	30	30	55	55	55
	500-690V	kW	11	11	15	15	30	30	55	55	55
Short Circuit Capacity: (IEC/EN)											
Max. Fuse Size (Type gG)	Amp	A	20	20	32	32	63	63	125	125	125
Rated fused short circuit current	Amp	kA	5	5	30	30	30	30	30	30	30
UL/CSA Rating (Power)											
DOL RATING											
3 Phase 3 Pole	120 v	HP	1.5	1.5	3	3	5	7.5	5	7.5	7.5
	240 v	HP	3	3	7.5	7.5	10	15	20	20	30
	480 v	HP	7.5	7.5	15	20	20	25	30	30	40
	600 v	HP	10	10	20	25	30	30	40	40	50
1 Phase	120 v	HP	0.5	0.5	1.5	2	3	3	3	3	3
	240 v	HP	1.5	1.5	2	3	5	7.5	7.5	7.5	7.5
Short Circuit Capacity (UL)											
Fuse	Type	Class	Rk5	Rk5	J	J	J	J	J	J	J
Max. Fuse Size	Amp	A	20	20	45	45	70	70	125	125	125
Rated Fused Short Circuit Current	Amp	kA	10	10	10	10	10	10	10	10	10
Terminal Cross Section											
Solid/Multiple Strand Wire		Min-mm ${ }^{2}$	1	1	2.5	2.5	2.5	2.5	2.5	2.5	2.5
		Max-mm ${ }^{2}$	4	4	10	10	25	25	50	50	50
Fine-Strand Wire with Sleeve		Min-mm ${ }^{2}$	0.5	0.5	0.75	0.75	2.5	2.5	4	4	4
		Max-mm ${ }^{2}$	4	4	6	6	10	10	50	50	50
American Wire Gauge		AWG	12	12	10	10	6	6	1	1	1
Thread Dimensions for Terminal Screw			M3.5	M3.5	M4	M4	M4	M4	M6	M6	M6
Recommended Tightening Torque for terminals		Nm	0.8	0.8	1.7	1.7	2	2	2.5	2.5	2.5

Load Break Switches

Switching Programmes

LB116, LB120, LB225, LB232, LB240, LB263, LB4080, LB4100, LB4125

$\left.\left.\left.\right\|_{2 / \pi 1} ^{1 / L 1}\right\|_{4 / T 2} ^{\mid}\right\|_{6 / T 3} ^{\mid / L 2}$	$\left.\left.\left.\left.\right\|_{2 / T 1} ^{1 / L 1}\right\|_{4 / T 2} ^{\mid}\right\|_{6 / T 3} ^{3 / L 2}\right\|_{8} ^{5 / L 3}$		$\left.\left.\left.\left.\left.\left.\right\|_{2 / T 1} ^{1 / L 1}\right\|_{4 / T 2} ^{l}\right\|_{6 / T 3} ^{\mid}\right\|_{2 / T 1} ^{\mid}\right\|_{4 / T 2} ^{\mid}\right\|_{6 / T 3} ^{\mid}$	$\left.\left.\left.\left.\left.\left.\left.\left.\right\|_{8} ^{7}\right\|_{2 / T 1} ^{1}\right\|_{4 / T 2} ^{1}\right\|_{6 / T 3} ^{\mid}\right\|_{4 / T 2} ^{\mid}\right\|_{6 / T 3} ^{\mid}\right\|_{4 / T 2} ^{\mid}\right\|_{8} ^{3 / L 2}$
3 Pole	3 Pole + 1 Main Module	4 Pole + 1 Main Module	6 Pole	8 Pole
32300	32400	32500	32600	32800
32309	32409	32509	32609	32809

LB116, LB120 Available upto 5 Pole only

$\left.\left.\left.\left.\right\|_{2 / T 1} ^{1 / L 1}\right\|_{4 / T 2} ^{\mid}\right\|_{6 / T 3} ^{3 / L 2}\right\|_{N} ^{5 / L 3}$	$\left.\left.\left.\left.\right\|_{N} ^{N}\right\|_{\text {2/T1 }} ^{1 / 2 / T 2}\right\|_{6 / T 3} ^{1}\right\|_{8} ^{\mid}$	$\left.\left.\left.\left.\left.\right\|_{2 / T 1} ^{1 / L 1}\right\|_{4 / T 2} ^{l}\right\|_{6 / T 3} ^{\mid / L 2}\right\|_{22} ^{5 / L 3}\right\|_{14} ^{21}$	1321 1/L1 3/L2 5/L3 7 $\left.7^{\prime} \nmid\right\rangle\left.\left.^{\prime}\right\|^{\prime}\right\|^{\prime}$ 1422 2/T1 4/T2 6/T3 8	$\left.\left.\left.\left.\left.\right\|_{N} ^{N}\right\|_{2 / T 1} ^{N}\right\|_{4 / T 2} ^{1 / L 1}\right\|_{6 / T 3} ^{\mid / L 2}\right\|_{8} ^{5 / 2}$	$\left.\left.\left.\left.7_{23}^{24}\right\|_{31} ^{32}\right\|_{\text {2/T1 }} ^{1 / 4 / \mathrm{T} 2}\right\|_{6 / \mathrm{T} 322} ^{\mid}\right\|_{14} ^{\mid}$
3 Pole + 1 Neutral Module	4 Pole + 1 Neutral Module	3 Pole + 1 Auxillary Module	4 Pole + 1 Auxillary Module	3 Pole + 2 Neutral Module	3 Pole + 2 Auxillary Module
32310	32410	32320	32420	32330	32340
32319	32419	32329	32429	32339	32349

LB116, LB120 Available upto 5 Pole only

LB4080, LB4100, LB4125

Front Mounting

16 A-20 A

- Fifth Pole can be

B13

25 A-63 A

- Degree of protection : Front IP55

B33

25 A-63 A

- 4 Hole front panel mounting
- Degree of protection : Front Ip65
- Switch with round padlocking device to prevent from being

switched ON by unauthorized personnel
- Max 3 padlocks

B30

25 A-63 A

All dimensions in mm.

- 4 Hole front panel mounting
- Degree of protection : Front IP55
- Switch with rectangular padlocking device to prevent the switch from
being switched ON by unauthorized personnel
- Max 4 padlocks

Load Break Switches

Front Mounting

- 4 Hole, front panel mounting
- Degree of protection : Front Ip55
- Switch with padlockable flag knob
- Maximum 1 padlock

B63

25 A-63 A

- 4 Hole front panel mounting
- Degree of protection : Front IP55
- Knob operated, keylock, key removable in OFF position (other options on request)

B19

16 A-20 A

- Dia 22.5 mm, single hole panel mounting
- Degree of protection : Front IP55
- Switch with padlockable flag knob
- Maximum 1 padlock

Amps	A	B	C
$16-20 A$	57	100	36
$25-63 A$	72	110	50

Load Break Switches

Rear Mounting
B23

- 2 Hole rear mounting
- Alternately snap mounting on DIN EN50022 rail (35 mm)
- Degree of protection : Front IP30

25 A-63 A
Suitable for M4 Screw $\stackrel{\theta}{6}$

80 A-125 A

MB42

$\sqrt{8-\infty}$

16 A-20 A

Mounting rail

25 A-63 A

80 A-125 A
Degree of protection : Front IP55
Hole rear mounting or snap mounting on DIN EN50022 rail (35 mm) can be operated from the front (door) - coupled with door mechanism

- Door interlock (Door openable only in OFF position)

Load Break Switches

Rear Mounting
MB34
逪

- 2 Hole rear mounting or snap mounting on DIN EN50022 rail (35 mm) can be operated from the front (door) coupled with door mechanism
- Door interlock (Door openable only in OFF position)
- Degree of protection : Front IP65
- Rigid metal shaft / switch assembly
- Switch with round padlocking device to prevent the Switch from being made ON by unauthorized persons
- Max. 3 padlocks as under : 16 A-20 A : Max. 1 padlock 25 A-63 A : Max. 2 padlocks 80 A-125 A : Max. 3 padlocks

16 A-20 A

25 A-63 A

80 A-125 A

- Adjustable mounting by cutting the metal shaft to appropriate length, to suit panel height
- Specific length of shaft can be offered on request

Plastic Enclosure Mounting
B31SM

16 A-20 A

- Door interlock-cover cannot open in ON condition
- Tested for Nema Rating $1,2,3,3 \mathrm{R}, 4,4 \mathrm{x}, 12$ \& 13 asper UL50 \& Nema 250
- Degree of protection : IP65
- Red / Yellow-handle colour for Main / Emergency switches
- Enclosure colour : Dark grey base and light grey cover
- Fourth pole can be added
- 25A/32A-6 Pole/8Pole can be offered in B31L

B31M

- Switch mounted in ABS enclosure, optional in polycarbonate
- Tested for Nema Ratings 1, 2, 3, 3R, 4, $4 x, 12 \& 13$ asper UL50 \& Nema 250

25 A-63 A

- Round padlocking device (max. 3 padlocks) to prevent the Switch from being made to ON by unauthorized personnel
- Degree of protection : IP65
- Switch rear mounted for easy connection
- Door interlock-cover cannot open in ON condition

- Red / Yellow-handle colour for Main / Emergency Switches
- Enclosure colour: Dark grey base and light grey cover
- Fourth and Fifth pole can be added
- 6 Pole/8Pole can be offered in B31L

B31L

- Switch mounted in ABS / polycarbonate (optional) enclosure
- Door interlock-cover cannot open in ON condition

80 A-125 A

- Red / Yellow-handle colour for Main / Emergency switches
- Interlock provided to open the lid only in OFF position
- Enclosure colour : Grey
- Fourth and fifth pole can be added

Metal Enclosure

AB31S

- Switch mounted in aluminium enclosure
- Round padlocking device (max. 3 padlocks) to prevent the switch from being made

Upto 25 A

Caution : Open the cover only in 'OFF' position

ON by unauthorized personnel

- Degree of protection : IP65
- Red / Yellow-handle colour for Main / Emergency switches
- Enclosure colour : Dark grey base and light grey cover
- Door Interlock

AB31M

- Switch mounted in aluminium enclosure
- Round padlocking device (max. 3 padlocks) to prevent

32 A to 40 A

Main / Emergency switches
the switch from being made to ON by unauthorized personnel

- Degree of protection : IP65
- Red / Yellow-handle colour for
- Enclosure colour: Dark grey base and light grey cover
- Door Interlock
- Fourth pole can be added

AB31L

80 A-125 A

- Switch mounted in aluminium enclosure
- Round padlocking device (max. 3 padlocks) to prevent the Switch

from being made ON by unauthorized personnel
- Degree of protection : IP65
- Red / Yellow-handle colour for Main / Emergency switches
- Enclosure colour : Dark grey base and light grey cover
- Door Interlock

Metal Enclosure

Upto 25 A

Caution : Open the cover only in 'OFF' position

- Switch mounted in Steel enclosure
- Round padlocking device (max. 3 padlocks) to prevent the switch from being made ON by
unauthorized personnel
- Degree of protection : IP53*
- Knob version available on request
- Red / Yellow-handle colour for

Main / Emergency switches

- Enclosure colour : Dark grey base and light grey cover - Door Interlock

32A-63A

Caution : Open the cover only in 'OFF' position

- Switch mounted in Steel enclosure
- Round padlocking device (max. 3 padlocks) to prevent the switch from being made ON by
unauthorized personnel
Degree of protection: IP53
- Knob version available on request
- Red / Yellow-handle colour for

Main / Emergency switches

- Enclosure colour : Dark grey base and light grey cover
- Fourth pole can be added
- Door Interlock

SB31L

- Switch mounted in Steel enclosure
- Round padlocking device (max. 3 padlocks) to prevent the switch from being made ON by unauthorized personnel

80 A-125 A

Caution : Open the cover only in 'OFF' position

- Fourth pole can be added
- Knob version available on request • Door Interlock
- Red / Yellow-handle colour for Main / Emergency switches
- 6Pole / 8 Pole can be offered in SB31XL
- Enclosure colour : Dark grey base and light grey cover

Accessories
Add on Main Pole (16 A-63 A)

- Equivalent switch electrical rating
- Used as 4th / 5th pole on either side of the switch

Add on Main Pole (80 A-125 A)

	For Switch Code	Code for Front Mounting Switch	Code for Rear Mounting Switch
	LB4080	FMC80	RMC80
	LB4100	FMC100	RMC100
	LB4125	FMC125	RMC125

- Equivalent switch electrical rating
- Used as 4th / 5th pole on either side of the switch

Applications

For switching action of additional pole, when mounted with the switch. The additional pole on either side of the switch can be used to switch on any single phase requirements simultaneously.

Add on Neutral Pole (16 A-63 A)

- Early make late break contact
- Can be fitted on either side of the switch

\langle	For Switch Code	Code for Front Mounting Switch	Code for Rear Mounting Switch
	LB116	FNC116	RNC116
	LB120	FNC120	RNC120

	For Switch Code	Code for Front Mounting Switch	Code for Rear Mounting Switch
	LB225	FNC225	RNC225
	LB232	FNC232	RNC232
	LB240	FNC240	RNC240
	LB263	FNC263	RNC263

Applications

To be used as Neutral Conductor to the switch.

Accessories
Add-on Neutral Pole (80 A-125 A)

- Early make late break contact
- Can be fitted on either side of the switch

Applications

To be used as Neutral Conductor to the switch.

	For Switch Code	Code for Rear Mounting Switch	Code for Front Mounting Switch
	LB4080	FNC80	RNC80
	LB4100	FNC100	RNC100
	LB4125	FNC125	RNC125

Add-on Auxiliary Pole

- 1NO contact early break / late make +1 NC contact
- Can be fitted on either side of the Switch

Applications

Auxiliary contact module has two contacts, 'NO and NC'. 'NO' contact is early break, late make contact. This is used to trigger any auxiliary circuits.

i^{1} 	For Switch Code	Code for Front Mounting Switch $1 \mathrm{NO}+1 \mathrm{NC}$	Code for Rear Mounting Switch $1 \mathrm{NO}+1 \mathrm{NC}$	Code for 2 NO Front Mounting Switch	Code for 2 NO Rear Mounting Switch
	LB116	FAC116	RAC116		
	LB120				
	LB225	FAC216	RAC216	$\begin{aligned} & \text { LB263 } \\ & \text { FA2NO } \end{aligned}$	$\begin{aligned} & \text { LB263 } \\ & \text { RA2NO } \end{aligned}$
	LB232				
	LB240				
$\left.\gamma^{1}\right\rangle^{\prime}$	LB263				
	LB4080	FAC416	RAC416	$\begin{aligned} & \text { LB4125 } \\ & \text { FA2NO } \end{aligned}$	$\begin{aligned} & \text { LB4125 } \\ & \text { RA2NO } \end{aligned}$
	LB4100				
	LB4125				

LB116-LB120

LB225-LB263

Rating

IEC / EN	$16 \mathrm{~A}, 500 \mathrm{~V}$	
AC-15	$220-240 \mathrm{~V}$	6 A
	$380-440 \mathrm{~V}$	4 A

Terminal Cross Section

Single/Multiple Strand Wire	min. mm^{2}	1.0
	max. mm^{2}	1.5
American Wire Gauge	AWG	16

Knobs \& Handles

LB Switches: Knob/Handle and Mounting Options

Mounting	LB116	LB120	LB225	LB232	LB240	LB263	LB4080	LB4100	LB4125
B03	FL, TD	FL, TD	-	-	-	-	-	-	-
B19	FP, FL, TD	FP, FL, TD	-	-	-	-	-	-	-
B40	FP	FP	-	-	-	-	-	-	-
B13	-	-	$\begin{gathered} \text { FL, } \\ \text { PG, BG } \end{gathered}$	$\begin{gathered} \text { FL, } \\ \text { PG, BG } \end{gathered}$	$\begin{gathered} \text { FL, } \\ \text { PG, BG } \end{gathered}$	$\begin{gathered} \text { FL, } \\ \mathrm{PG}, \mathrm{BG} \end{gathered}$	-	-	-
B30	-	-	TD, FL	TD, FL	TD, FL	TD, FL	-	-	-
B33	-	-	RD						
B63	-	-	TD, FL	TD, FL	TD, FL	TD, FL	FL	FL	FL
B23	-	-	TD, FL	TD, FL	TD, FL	TD, FL	FL	FL	FL
MB34	FP	FP	SH, RD LH, RH	$\begin{gathered} \mathrm{RD} \\ \mathrm{LH}, \mathrm{RH} \end{gathered}$	$\begin{aligned} & \mathrm{SH}, \mathrm{RD} \\ & \mathrm{LH}, \mathrm{RH} \end{aligned}$	$\begin{gathered} \mathrm{RD} \\ \mathrm{LH}, \mathrm{RH} \end{gathered}$			
MB42	FL	FL	BG, PG						
AB31S, SB31S	RD	RD	RD	RD	RD	RD	-	-	-
$\begin{gathered} \text { B31SM, B31M, } \\ \text { AB31M, SB31M } \\ \text { B31L } \end{gathered}$	FP	FP	$\begin{aligned} & R D \\ & R D \end{aligned}$	RD RD	RD RD	$\begin{aligned} & \mathrm{RD} \\ & \mathrm{RD} \end{aligned}$	$\begin{aligned} & \text { RD, LH } \\ & \text { BG, RH } \end{aligned}$	RD, LH BG, RH	RD, LH BG, RH
SB31XL	-	-	-	-	-	-	BG, LH	BG, LH	BG, LH

LB Switches: Knob/Handle, Enclosure Mounting Options

Enclosure Mounting	B31SM	B31M	B31L	SB31S	SB31M	SB31L	AB31S	AB31M
Knob/Handle	RD, FP	RD	RD, LH	RD, BG,	RD, BG,	LH, BG,	RD, FL,	RD, BG,
PG	PG	PG, RD	BG, PG	PG				

The knobs/handles highlighted in red are standard, others indicate possible options.

Changeover Switches

EB-DG Changeover Switches

Switching Programme

Code : 311533 Pole Changeover

Features

- 25 A - 125 A, 3 and 4 Pole, AC 23 duty
- Available with and without SS enclosure
- Different mounting options

Code : 311544 Pole Changeover

	R	Y	B	N	R	Y	B	N
				\rangle	\rangle	\rangle	i	\bigcirc
I	X	X	X	X				
O								
II					X	X	X	X

- Excellent switching performance
- High short circuit capacity
- Door interlock and padlock available
- Provides adequate space for cable termination and very convenient for installation termination

B13

25 A-63 A, Front Mounting

- 4 Hole front panel mounting
- Degree of protection : Front IP55

B21

25 A-63 A, Rear Mounting

80A-125A , Rear Mounting

Load Break Switches

Changeover Switches

MB42

80A-125A, Rear Mounting

MB34

80A-125A, Rear Mounting

- 2 Hole rear mounting or snap mounting on DIN rail and operable from the front (door) coupled with door mechanism
- Door interlock (door operable only in OFF position)
- Degree of protection : Front IP65
- Rigid metal shaft/switch assembly
- Switch with round padlocking device to prevent the switch from being made ON by unauthorized persons
- Max. 3 padlocks
- Adjustable mounting by cutting the metal shaft to appropriate length to suit panel height
- Specific length of shaft can be offered on request

Load Break Switches

Changeover Switches

Enclosure Changeover Switches

Features

- 25 A - 125 A, 4 Pole, AC 23 duty
- Range available : 3 Pole Changeover - 31153, 3 Pole + Neutral Pole Changeover - 31154
- Powder coated steel enclosure with separate earthing or IP65, ABS enclosure having interlock to open the lead only in OFF position for safety
- Colour : Yellow front plate and Red ball grip handle

SB31

25 A-63 A

- Powder coated steel enclosure
- Interlock provided to remove cover only in OFF position for safety
- Separate earthing provided
- Colour : Yellow front plate and Red ball grip handle / grey front plate and Black ball grip handle

B31L

63 A

- Switch mounted in grey ABS / Polycarbonate optional enclosure with IP65 protection and interlock provided to open the lid in OFF position

Changeover Switches

SB31XL

80 A-125 A

- Powder coated steel enclosure
- Separate earthing provided
- Interlock provided to remove cover only in OFF position for safety
- Colour : Yellow front plate and Red ball grip handle / grey front plate and Black ball grip handle

Changeover Switches: Knob/Handle and Mounting Options

Mounting	LB225	LB232	LB240	LB263	LB4080	LB4100	LB4125
B13	PG, BG	PG, BG	PG, BG	PG, BG	-	-	-
MB34	RD						
MB42	PG, BG						
B21	BG, PG	BG, PG	BG, PG	BG, PG	PG, BG	BG, PG	BG, PG
SB31	BG, PG	BG, PG	BG, PG	BG, PG	-	-	-
SB31XL	-	-	-	-	BG, PG	BG, PG	BG, PG
B31L	RD, BG	RD, BG	RD, BG, PG	RD, BG, PG	-	-	-

The Knobs/handles highlighted in blue are standard, others indicates possible options.

Ordering code for load break switches

LB	$\frac{X}{T}$	$\underline{X X X X X}$	$\frac{X X X X X}{}$	$\frac{X X}{}$	$\frac{X X}{}$
Load Break Switch	Rating	Programme Code	Mounting Options	Knob Options	Colour

Example

- LB Switches, 25 A, 3P, 9 O'clock, 4 hole front mounting, yellow front plate, red tear drop knob
- LB Switches, 63 A, 3P, 9 O'clock, 4 hole front mounting, with metal shaft, yellow front plate, red round knob
- LB Switches 40 A, 3P, 12 O'clock OFF • LB G 31300 B31SM RD GB in B31SM enclosure, grey front plate, black round knob
- EB-DG Changeover Switch, 63 A, 3 P , metal enclosure with interlock, yellow front plate, red ball grip handle

Accessories

ADD ON MAIN POLE (16A TO 125A)

ADD ON AUXILIARY POLE (16A TO 125A)

ADD ON NEUTRAL POLE (16A TO 125A)

ADD ON 2NO(25A TO 125A)

FA 2NO	RA 2NO
Front Mounting 2NO	Rear Mounting 2NO

Rating Selection Table

Ampere (A)	Code (X)
16	C
20	D
25	E
32	F
40	G
63	I
80	J
100	K
125	L

*** Note : Please contact nearest L\&T branch office.

Load break switches (Ratings: 16A to 125A)

Description	3 Pole LB switch			4 Pole LB switch		
	Cat. No.	Can also be given on request		Cat. No.	Can also be given on request	
Single Hole MTG Switch with Flag Knob	LBX32300B19FPYR			LBX32400B19FPYR		
Front Plate MTG with Flag Knob	LBX32300B40FPYR			LBX32400B40FPYR		
Front Panel MTG with B03 (48x48) Plate	LBX32300B03FLYR	32309	TDYR	LBX32400B03FLYR	32409	TDYR
Front Panel MTG with B13 (64x64) Plate with Flag Knob	LBX32300B13FLYR	32306/32309	TDYR	LBX32400B13FLYR	32406/32409	TDYR
Front Panel MTG with B13 (64x64) Plate with BG Handle	LBX32300B13BGYR	32309		LBX32400B13BGYR	32409	
DIN Rail MTG Switch with Flag Knob	LBX32300B23FLGB			LBX32400B23FLGB		
Rectangular Pad Lock Switch with TDYR	LBX32300B30TDYR			LBX32400B30TDYR		
Round Pad Lock Switch with RDYR	LBX32309B33RDYR			LBX32409B33RDYR		
Switch with B63 Lock \& Key Version	LBX32309B63TDYR			LBX32409B63TDYR		
Base MTG Switch with DIL and Pad Lock	LBX32309MB34RDYR			LBX32409MB34RDYR		
Base MTG Switch with BG Handle	LBX32309MB42BGYR			LBX32409MB42BGYR		
Switch in ABS Enclosure - in B31SM	LBX32300B31SMRDYR			LBX32400B31SMRDYR		
Switch in ABS Enclosure - in B31M	LBX32309B31MRDYR			LBX32409B31MRDYR		
Switch in SS Enclosure - in B31L with Round Plate	LBX32309SB31LRDYR			LBX32409SB31LRDYR		

EB-Gen Changeover Switches (25-63A)

Description	3 Pole EB-GEN Changeover switch Cat. No.	4 Pole EB-GEN Changeover switch Cat. No.
Changeover with Front Panel Mounting	EBX31153B13BGYR	EBX31154B13BGYR
Changeover with Rear Mounting	EBX31153MB42BGYR	EBX31154MB42BGYR

Rating Selection Table

Ampere (A)	Code (X)
25	E
32	F
40	G
63	I

[^1]

Wires \& Cables

Wires \& Cables

FR (Flame Retardant) PVC Insulated House Wires

L\&T House Wires are made up electrolytic grade, bright, plain annealed copper conductor, as per IS : 8130-1984. These wires are suitable for all Commercial \& Domestic wiring applications.

For additional safety, the insulation is of Flame Retardant - FR PVC compound. It has high oxygen and temperature index. These properties restrict propagation of flame and wires do not catch fire up to 250 degree centigrade at ambient oxygen level.

L\&T House Wires are twin coated for superior insulation. The House Wires have uniform diameter and are available in standard lengths of 90 meter and 180 meter coils.

Single core, twin insulated wires in voltage grade 1100V, conforming to IS : 694-1990 with additional FR properties.

Range - 0.75 Sq.mm to 16 Sq.mm
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Nominal } \\ \text { area of } \\ \text { conductor }\end{array} & \begin{array}{c}\text { Number/Nom. } \\ \text { Dia of wire }\end{array} & \begin{array}{c}\text { Thickness } \\ \text { of insulation } \\ \text { (Nom) }\end{array} & \begin{array}{c}\text { Approx. } \\ \text { overall } \\ \text { Diameter }\end{array} & \begin{array}{c}\text { Current carrying capacity* 2 cables, single phase }\end{array} & \begin{array}{c}\text { Max Resistance } \\ \text { (n conduit/ } \\ \text { (runking }\end{array} & \begin{array}{c}\text { Unenclosed-clipped } \\ \text { directly to surface or on cable tray }\end{array} & \text { A0 }{ }^{\circ} \text { C }\end{array}\right]$

Above data is indicative. L\&T will not be liable for damage arising out of incorrect applications.

Standard Colour : Red, Yellow, Blue, Green, Black. *As per IS : 3961 (Part V) - 1968.
\# As per Conductor Class 2 of IS : 8130-1984. \$ As per Conductor Class 5 of IS : 8130-1984.

Special Insulation wires

L\&T Flame Retardant Low Smoke (FRLS) wire - These wires are made of special insulation material with higher oxygen and temperature indices and lower smoke density rating and acid gas generation. This insulation retards flame propagation and generates low smoke under fire condition.

Range-1 Sq.mm to 16 Sq.mm.

L\&T Zero Halogen Flame Retardant (ZHFR) wire - The insulation is free from halogen, thus preventing emission of corrosive gases under conditions of fire. These wires are primarily used where critical control supply is essential during fire like - lifts, fire alarms, hospitals etc.

Oxygen Index is used as a measure of flame retardant property of the insulating material. The oxygen index indicates percentage of oxygen required for supporting combustion of insulating material at room temperature. Higher oxygen index is desirable.

Temperature Index indicates the temperature at which normal oxygen content of 21% in air will support combustion of insulating material. Higher temperature index is better.

Smoke Density indicates the loss of light transmission from insulation material under fire. Lower the smoke density, the better is the visibility \& efficacy of fire fighting operations.

Acid Gas Generation indicates the amount of hydrochloric acid gas evolved from insulation of cable under fire. lower acid gas generation is desirable.

Characteristics	Standard	Typical Value
Oxygen index	ASTM-D 2863	More than 29%
Temperature index	ASTM-D 2863	More than $250^{\circ} \mathrm{C}$
Smoke density rating	ASTM-D 2843	Less than 60%
Acid gas generation	IEC 754-1	Less than 20%

Wires \& Cables

Flexible Wires

L\&T Flexible wires are made of bright, plain multi-stranded annealed copper conductor, as per Class 5 of IS : 8130-1984 with PVC insulation. These wires are used for all industrial wiring applications and are available in single and multicore in standard length of 100 meter.

Single unsheathed cable (Flexible) voltage grade 1100 V, conforming to IS : 694-1990

Range - 0.5 Sq.mm to 240 Sq.mm

Nominal area of conductor	Number/ Nom. Dia of wire	Thickness of insulation (Nom)	Approx. overall Diameter	Current carrying Capacity as per IS : 3961	Max Resistance per km at $20^{\circ} \mathrm{C}$
Sq. mm	mm	mm	mm	Amp.	Ohms
0.5	16/.2	0.6	2.20	04	39.00
0.75	24/.2	0.6	2.40	07	26.00
1.0	32/. 2	0.6	2.60	11	19.50
1.5	30/. 25	0.6	2.90	14	13.30
2.5	50/. 25	0.7	3.50	19	7.98
4.0	56/.3	0.8	4.30	26	4.95
6.0	84/. 3	0.8	4.80	31	3.30
10	80/.4	1.0	6.10	42	1.91
16	126/.4	1.0	7.00	57	1.21
25	196/.4	1.2	8.70	71	0.78
35	276/.4	1.2	10.00	91	0.55
50	396/. 4	1.4	12.00	120	0.38
70.0	360/. 5	1.6	14.30	160	0.27

Above data is indicative. L\&T will not be liable for damage arising out of incorrect applications.

Core Colours :

- 2 Cores - Red, Black
- 3 Cores - Red, Black, Yellow / Green
- 4 Cores - Red, Yellow, Blue, Yellow / Green

Sheath Color : Black

Wires \& Cables

Agriculture Submersible Flat Cable

L\&T agriculture submersible Flat cables are made of bright, plain multi-strand annealed copper conductor, as per class 5 of IS : 8130: 1984. These cables are used for Agricultural submersible motor applications and are available in 3 core -500 meter \& 1000 meter drums.
Voltage Grade $1.1 \mathrm{kV}(1100 \mathrm{~V})$ conforming to IS : 694 : 1990.

Nominal Area of Conductor (Sq. mm)	No. of Conductorl Nominal Dia of Wire (mm)	Thicknesses of Insulation (Nominal) (mm)	Nominal Thickness of Sheath (mm)	Max. Overall Diameter (mm)		Current Carrying Capacity as Per IS: 3961 (Amp.)	Max. Resistance Per Km at $20^{\circ} \mathrm{C}$ (Ohms)
				W	B		
1.0	14/0.3	0.60	0.90	9.80	4.60	11	18.10
1.5	22/0.3	0.60	0.90	10.70	5.20	14	12.10
2.5	36/0.3	0.70	1.00	12.90	5.80	19	7.41
4.0	56/0.3	0.80	1.10	15.00	6.80	26	4.95
6.0	84/0.3	0.80	1.20	17.50	7.50	31	3.30
10.0	80/0.4	1.00	1.20	21.40	8.80	45	1.91

L\&T XLPE Agricultural Flat Cables - These wires are made of cross-linked polyethylene material with high continuous conductor temperature $-90^{\circ} \mathrm{C}$ and high intermittent overloading $-130^{\circ} \mathrm{C}$. Since it has better corrosion resistance, it is suitable for alkaline hard water areas.

Flat Cable Selection Chart

Submersible Pumpset Cable Selection Chart for 415 V - Three Phase - 50 Hz

$\begin{aligned} & \text { Length } \\ & \text { HP }{ }^{(m)} \end{aligned}$	10	20	30	40	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400	450	500
3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	2.5	4	4	4	6	6	6
4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	4	4	4	6	6	6	10	10
5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	2.5	4	4	4	6	6	10	10	10	10
6	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	2.5	2.5	4	4	4	6	6	10	10	10	10	16
7.5S	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	4	4	4	4	4	6	6	10	10	10	16	16	16
7.5D	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	4	4	4	6	6	10	10	10
10	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	2.5	4	4	4	6	6	10	10	10	10	16
12.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	4	4	4	4	4	6	6	10	10	10	16	16	16
15	2.5	2.5	2.5	2.5	2.5	2.5	2.5	4	4	4	4	6	6	6	10	10	10	16	16	16	16
17.5	4	4	4	4	4	4	4	4	4	4	6	6	6	10	10	10	16	16	16	25	25
20	4	4	4	4	4	4	4	4	4	6	6	10	10	10	10	16	16	16	25	25	25
25	4	4	4	4	4	4	4	4	4	6	6	10	10	10	10	16	16	25	25	25	35
30	6	6	6	6	6	6	6	6	6	6	10	10	10	10	16	16	25	25	25	35	35
40	10	10	10	10	10	10	10	10	10	10	10	16	16	16	25	25	25	35	35	50	50
50	16	16	16	16	16	16	16	16	16	16	16	16	16	25	25	35	35	50	50	50	70

Submersible Pumpset Cable Selection Chart for 220 V - Single Phase - 50 Hz

0.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	4	4	4	6	6	6	10	10
0	1.5	1.5	1.5	1.5	1.5	1.5	2.5	2.5	2.5	2.5	4	4	4	6	6	6	10	10	10	16	16
1.5	1.5	1.5	1.5	2.5	2.5	2.5	4	4	4	6	6	10	10	10	10	16	16	16	25	25	25
2	1.5	1.5	2.5	2.5	4	4	4	6	6	6	10	10	10	16	16	16	25	25	25	35	35
3	1.5	1.5	2.5	2.5	4	4	6	6	6	10	10	10	16	16	16	16	25	25	25	35	35
4	1.5	2.5	2.5	4	4	6	6	10	10	10	10	16	16	16	16	16	25	25	35	35	35
5	2.5	2.5	4	4	6	6	10	10	10	10	16	16	16	25	25	25	35	35	50	50	50

Note 1. HP 7.5 D and above are STAR/DELTA motors Single Phase:
2. For STAR DELTA Starting reduce current
by $1 / 3$ for selecting suitable cable
Conversion Table:
$1 \mathrm{~m}=3.28 \mathrm{ft}$.
$1 \mathrm{~m}=3.28 \mathrm{ft}$.
$1 \mathrm{ft}=0.305 \mathrm{~m}$

For other voltages the cable size is to be selected as follows:
For other voltages the cable size is to be selecte
Calculated length $=(220 \div$ Volt $) x$ actual length Calculated length $=(220 \div$ Volt $) \mathrm{x}$ actual length \quad For other voltages \quad Calculated length $=(415 \div$ Volt $) \mathrm{x}$ actual length.
Example: for a 3 HP 460 Volt motor and 100 meters actual cable length, Example: For a 20 HP motor at 350 Volt and 90 metres actual cable calculated length $=(220 \div 460) \times 100=48 \mathrm{~m}$. The size of the cable to be length, calculated length $=(415 \div 350) \times 90=107 \mathrm{~m}$ the size of the selected for 48 m from the chart is $4 \mathrm{~mm}^{2}$.

Wires \& Cables

Electrical Data

Selection chart for Typical Domestic Loads*

Max. Short Circuit current as per Transformer kVA*

Ambient Temp. ${ }^{\circ} \mathrm{C}$	30	35	40	45	50
Rating factor	1.09	1.04	1	0.85	0.77

*Above data is indicative. L\&T will not be liable for damage arising out of incorrect applications.

Transformer Rating	Full Load Current at 415 V	Max. Short Circuit Current	
kVA	A	(kA)	
		4\% impedance	5\% impedance
25	35	0.875	0.7
40	56	1.4	1.1
63	88	2.2	1.8
100	139	3.5	2.8
125	174	4.4	3.5
160	223	5.6	4.5
200	278	7	5.6
250	348	8.7	7
315	438	11	8.8
400	560	14.2	11.3
500	695	17.4	13.9
630	876	21.9	17.5
800	1112	27.8	22.2
1000	1390	34.8	27.8
1250	1740	43.5	34.8
1600	2230	55.8	44.6
2000	2780	69.5	55.6
2500	3480	87	69.6

Derating of Wires*

The above data is only for guidance and may vary for different manufacturers. The proper load of items should be checked for current requirement and appropriate Wire and MCB size should be accordingly chosen.

L\&T Wire Range

$0.75 \mathrm{~mm}^{2}$ to $16 \mathrm{~mm}^{2}$

$0.5 \mathrm{~mm}^{2}$ to $240 \mathrm{~mm}^{2}$

$1.0 \mathrm{~mm}^{2}$ to $35 \mathrm{~mm}^{2}$

Cable Ducts

Features

- Manufactured from specially compounded highimpact rigid polyvinyl chloride
- Will not peel, chip or crack
- Resists oil, salt solution and fungus
- Nonflammable, warp-proof and non-brittle
- High dielectric strength and withstands temperature upto $60^{\circ} \mathrm{C}$
- Unique cover locking design prevents popping up of wires while removing cover
- Elongated slots at the bottom allow flexible mounting
- Heavy \& robust sections

Applications

- Facilitates systematic Wiring
- Enhances aesthetics and clarity
- Permits faster connections, addition and fault tracing of wires
- Avoids bunching and tapping
- Provides complete electrical insulation
- ce marked

Slotting Styles (A \& B Types)

Unslotted (US)

Standard Slotted
(S)

Circular Slotted
(C)

Straight Slotted
(L)

Thin Slotted
(T)

Oblong Slotted
(O)

Multiple Slotted
(M)

B Type

Non slip cover design of minimum encumbrance and maximum grip

Snap-off side wall fingers permit enlarging slot for any size of wire or wire bundles. Requires no tools for cutting.

Channel with cover width x Height (mm)	Cable housing Capacity (numbers)			Standard Pack Channel with cover (in 1 mtrs)	Standard Pack Channel with cover (in 2 mtrs$)$	Available Slotting Style
	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { OD } 3.18 \mathrm{~mm} \\ & \text { (16 AWG) } \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { OD } 3.53 \mathrm{~mm} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { OD } 4.01 \mathrm{~mm} \\ \text { (12 AWG) } \end{gathered}$			
B25 x 30	37	30	23	100	50	S
B25 x 40	48	39	31	75	50	S, T
B25 x 60	72	57	45	50	25	S, T
B25 x 80	92	75	59	50	25	S, T
B25 $\times 100$	126	105	81	50	25	S
B30 $\times 20$	31	25	20	100	50	US
B40 $\times 40$	81	65	51	50	25	S, T
B40 $\times 60$	121	98	77	50	25	S, T
B40 x 80	160	130	102	50	25	S, T, O
B40 $\times 100$	200	164	128	50	25	S, T
B50 $\times 100$	135	195	152	30	18	S, T
B60 x 20	61	50	39	50	25	US
B60 x 40	123	99	78	50	25	S, T
B60 x 60	180	146	114	50	25	S, T
B60 x 80	246	199	156	40	20	S,T.O
B60 $\times 100$	308	247	194	30	18	S, T
B72 x 64	234	190	149	32	18	S
B75 x 75	291	236	185	32	16	S
B75 $\times 100$	394	333	251	25	14	S, T
B80 x 40	165	134	105	50	25	S, T
B80 $\times 60$	251	203	159	40	20	S, T
B80 $\times 80$	337	272	214	32	16	S, T, O
B80 $\times 100$	416	332	248	24	14	S, T
B100 $\times 60$	316	256	201	30	14	S, T
B100 $\times 80$	425	344	270	25	14	S, T
B100 $\times 100$	531	429	336	18	10	S, T
B120 $\times 80$	499	405	318	18	10	S
B150 $\times 100$	807	653	512	12	6	S, T

	Cover Standard Pack	
Cover Code for B type	Size (with in $\mathbf{m m}$)	Cover Standard Pack Total Length In mtrs
BC25	25	50
BC30	30	50
BC40	40	50
BC45	45	50
BC50	50	50
BC60	60	50
BC72	72	50
BC80	80	50
BC100	100	50
BC125	125	50
BC150	150	50

Sloting Style

Standard Slot (S)

Standard Slot

Thin Slot (T)

Thin Slot

Bottom Slotting Style

Duct Width : $25 \mathrm{~mm}, 30 \mathrm{~mm}$

Duct Width : 150 mm

Duct Width : $40 \mathrm{~mm}, 50 \mathrm{~mm}, 60 \mathrm{~mm}, 72 \mathrm{~mm}$, and 75 mm

Duct Width : $80 \mathrm{~mm}, 100 \mathrm{~mm}$ and 120 mm

A Type
Specially designed profiles of duct and cover for fast and efficient locking.

Channel with Cover Height X Width (mm)	Cable Housing Capacity (nos)			Available Slotting Styles	Standard Pack Channel with Cover	
	$\begin{gathered} 1.5 \mathrm{~mm}^{2} \\ \text { OD } 3.53 \mathrm{~mm} \\ \text { (16 AWG) } \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { OD } 3.53 \mathrm{~mm} \\ \text { (14 AWG) } \end{gathered}$	$4 \mathrm{~mm}^{2}$OD 4.01 mm(12 AWG)			
					1 mtrs	2 mtrs
A15 $\times 15$	11	9	7	H	100	75
A15 x 25	19	15	12	H	100	50
A25 x 25	31	25	20	S, O, T	100	50
A30 $\times 25$	37	30	23	S, O, T	100	50
A40 $\times 30$	59	48	37	S, T	75	50
A45 $\times 25$	56	45	35	S, O, C, M, T, L	75	50
A45 $\times 30$	67	54	42	S, O, C, M, T, L	50	25
A45 x 45	100	81	63	S, O, C, M, T, L	50	25
A45 $\times 60$	134	108	84	S, O, C, M, T, L	50	25
A60 x 25	74	60	47	S, O, T	50	25
A60 $\times 45$	134	108	84	S, O, T	50	25
A60 x 60	178	145	112	S, O, T	50	25
A60 x 120	356	289	224	S	18	8
A75 x 45	167	135	105	S, T, C	40	25
A75 $\times 75$	278	226	175	S, T, C	32	16
A80 x 80	316	257	199	S, T	25	16
A100 $\times 100$	495	401	311	S	18	8

Note: All sizes are available in unslotted (us) style

Bottom Mounting Slots for All Sizes

Cover Standard Pack			
Cover Code for A type duct	Size (with in mm)	Standard Pack Total Length In mtrs	
AC15	15	50	
AC25	25	50	
AC30	30	50	
AC40	40	50	
AC45	45	50	
AC60	60	50	
AC75	75	50	
AC80	80	50	
AC100	100	50	
AC125	125	50	
AC150	150	50	

Cable Ducts

Accessories

HFFR: (Halogen Free Fire Retardent Cable Ducts)

HFFR Cable ducts are made from specially formulated compound, which does not release significant amount of toxic gases or corrosive gases when ignited in a fire. These wiring ducts are free from halogens such as fluorine, chlorine, bromine, iodine, and/or astatine. These are tested and confirms to EN 50085 and IEC 60754-2 for. These have maximum application temperature $\left(+90^{\circ} \mathrm{C}\right)$ than PVC ducts. Hence can be used in halogen free or high temperature indoor applications. It confirms to UL94-V0 and $960^{\circ} \mathrm{C}$ Glow wire test as per IEC 60695-2-11.

Applications:

- Oil, Gas and Petrochemical facilities
- Railways, Ships and Metro rails
- Outdoor Panels, data centres and power generation facilities

Sr. Nos.	Part Name	Figure	Ordering Code	Standard Packing
1	Fixing Lug	$(\infty$	BFL 1	100
2	Cable Tie Attachment	$\sqrt{8}$	BCT 1	100
3	Nylon Fastener	\mathbb{A}	BNF 6 (6 mm) BNF $4(4 \mathrm{~mm})$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$
4	Wire Retainer I		BWRT (Thin)*	100
5	Wire Retainer II		BWRS (STD)	100
6	Name Plate		BNPS (STD) BNPT (Thin)	100
7	Mounting Clip I	Br	BMC 1	100
8	Mounting Clip II	usmen	BMC 2	100

* Pls. specify size \& slotting style while Ordering.

Disclaimer for Rotary Switches, Cable Duct, Load Break Switches, House Wire

Every effort as to the correctness or sufficiency of the information and data contained in the catalogue is made. We however cannot accept any liability for the accuracy or completeness of the information and data provided. No claims in this regard shall consequently be accepted.
We reserve the right to make changes, without prior notice, in the catalogue.
Products with CAT no. having, with or without, dot as suffix are same.

Timing Devices \& Supply Monitors

Timers and supply monitoring devices find their use in a wide variety of applications in the industry. L\&T's reliable Timing devices and Supply monitors from GIC over the past 3 decades have provided the best solutions to its customers.

GIC product range includes:

- Time switches
- Timers
- Supply monitoring devices (Voltage and Current)
- Digital hour meter / Digital counter

Time Switches are used for fixed time based daily / weekly applications. They are ideal for lighting applications and are also used to control air-conditioners / coolers, geysers, conveyers, pumps \& exhaust fans etc.

Timers are used to control processing times in a wide range of applications which includes star to delta changeover operations in Motor control / Starter panels, elevators, conveyor belt sequences, air conditioning systems, warning light systems etc.

The supply monitors ensure reliable detection of phase parameters such as phase loss, phase sequence and phase unbalance in all three-phase networks. They find application in HVAC, welding machines, elevators and cranes, etc.

The Current Monitoring Relay provides monitoring and protection of loads against overload, underload, phase loss, phase asymmetry and phase sequence faults. Their applications include all motor and pump protection panels with single phase and three phase supply.

The Earth Leakage Relay monitors, detects and protects power systems from earth leakage faults with wide selectable range of 30 mA to 30 A . They are widely used in mines and in Gen sets.

Timing Devices \& Supply Monitors

Standards for Timing Devices \& Supply Monitors

EMI/EMC:		
Harmonic current emissions	IEC 61000-3-2	Ed. 3.0 (2005-11) Class A
Voltage flicker \& fluctuation	IEC 61000-3-3	Ed. 2.0 (2008-06) Class A
ESD	IEC 61000-4-2	Ed. 1.2 (2001-04) Level II
Radiated susceptibility	IEC 61000-4-3	Ed. 3.0 (2006-02) Level III
Electrical fast transients	IEC 61000-4-4	Ed. 2.0 (2004-07) Level IV
Surge	IEC 61000-4-5	Ed. 2.0 (2005-11) Level IV
Conducted susceptibility	IEC 61000-4-6	Ed. 2.2 (2006-05) Level III
Power frequency magnetic field	IEC 61000-4-8	Ed. 1.1 (2001-03)
Voltage dips and interruption (AC)	IEC 61000-4-11	Ed. 2.0 (2004-03) Class B
Conducted emission	CISPR 14-1	Ed. 5.0 (2005-11) Class B
Radiated emission	CISPR 14-1	Ed. 5.0 (2005-11) Class B
Safety:		
Test voltage between input and output	IEC 60947-5-1	Ed. 3.0 (2003-11) 2 kV
Impulse voltage between input and output	IEC 60947-5-1	Ed. 3.0 (2003-11) Level IV
Single fault	IEC 61010-1	Ed. 2.0 (2001-02)
Insulation resistance	UL508	Ed. 17 (1999-01) > 2000 M
Leakage current	UL508	Ed. 17 (1999-01) < 3.5 mA
Environmental testing:		
Cold heat	IEC 60068-2-1	Ed. 6.0 (2007-03)
Dry heat	IEC 60068-2-2	Ed. 5.0 (2007-07)
Vibration	IEC 60068-2-6	Ed. $7.0(2007-12) 5 \mathrm{~g}$
Repetitive shock	IEC 60068-2-27	Ed. 4.0 (2008-02) $40 \mathrm{~g}, 6 \mathrm{~ms}$
Non-repetitive shock	IEC 60068-2-27	Ed. 4.0 (2008-02) $30 \mathrm{~g}, 15 \mathrm{~ms}$

Time Switches

Analog Time Switch

Type FM/1

- Modular construction
- Power reserve upto 150 hrs
- Inbuilt over-ride facility
- High switching capacity
- Analog and digital versions
- Tamper proof sealing
- 1 set of changeover, 240 V AC, 16 A (resistive)

- Enclosure IP55 with gland plate and locking arrangement

Description		Cat. No.
	Flush Mounting	Base/DIN rail Mounting
One daily dial 240 V AC - QT	J648F1	J648B1
One weekly dial 240 V AC - QW	J848F1	J848B1
One daily dial 110 V AC - QT	J638F1	J638B1
One weekly dial 110 V AC - QW	J838F1	J838B1
Digital 240 V AC	D847F2	D847B2

Connection Diagrams

Overall Dimensions

Base/DIN Mounting

Flush Mounting

Time Switches		FM1 / QT	FM1 / Digi 20
Supply voltage \& frequency		240 V AC, $50 / 60 \mathrm{~Hz}$	240 V AC, $50 / 60 \mathrm{~Hz}$
Power consumption		2 VA	4.4 VA
Accuracy		$\pm 1.5 \mathrm{Sec} /$ day at $20^{\circ} \mathrm{C}$	$\pm 1 \mathrm{Sec} /$ day at $20^{\circ} \mathrm{C}$
Switching contact		$1 \mathrm{C} / \mathrm{O}$ contact - AgCdO	$1 \mathrm{C} / \mathrm{O}$ contact - AgCdO
Contact rating	Resistive	16 A @ 250 V AC	16 A @ 250 V AC
	Inductive ($\cos \varnothing=0.6$)	8 A@ 250 V AC	4 A @ 250 V AC
	Incandescent lamp	1350 W	1350 W
Shortest switching time	Daily	15 min	1 min
	Weekly	2 hrs	1 min
Power reserve		150 hrs	10 years from factory @ $20^{\circ} \mathrm{C}$
Memory locations		NA	20
Ambient temperature		$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Manual over-ride		Provided	Provided
Mounting		Flush, Base/DIN	Flush, Base/DIN
Weight (unpacked)		185 gms (approx)	185 gms (approx)

Time Switches

Crono \& Pulse

- Precise time programming for daily/weekly/pulse applications
- 25 ON/OFF programs
- Weekend exclusion \& weekly OFF programming
- LED Indication for relay status
- 12/24 hour display format
- 6 years battery reserve
- Simple reset \& manual override
- Settable DST \& keypad lock feature

Description	Cat. No.
Crono time switch, 110-240 V AC ($50 / 60 \mathrm{~Hz}$), $1 \mathrm{C} / \mathrm{O}$ (SPDT), $25 \mathrm{ON} / \mathrm{OFF}$	67DDT0
Crono time switch, 24 V DC, 1 C/O (SPDT), 25 ON / OFF	6GHDT0
Crono time switch, 12 V DC , $1 \mathrm{C} / \mathrm{O}$ (SPDT), $25 \mathrm{ON} / \mathrm{OFF}$	69HDT0
Pulse time switch, 110-240 V AC ($50 / 60 \mathrm{~Hz}$), $1 \mathrm{C} / \mathrm{O}$ (SPDT), 16 Pulse	67DDT9

Connection Diagrams

67DDT0, 67DDT9, 6GHDT0, 69HDT0

Overall Dimensions

Timing Devices \& Supply Monitors

Time Switches
Crono \& Pulse

Cat. No.		Crono			Pulse
		67DDT0	6GHDT0	69HDTO	67DDT9
Supply voltage (阫)		110 to 240 V AC (-20\% to $+10 \%$) $50 / 60 \mathrm{~Hz}$	24 V DC	12 V DC	
Power consumption (Max.)		6 VA			
Battery backup		Approx 6 years running reserve			
LED indication		Red LED for Relay status			
Clock format		Either AM / PM (12 h) or 24 h clock			
Reset		Programs and clock are reset to default			
Number of memory locations		25 ON / OFF programs			16 ON programs
Number of operating modes		5 Modes			3 Modes
Contact arrangement		$1 \mathrm{C} / \mathrm{O}$ (SPDT)			
Contact rating:	Resistive	16 A (NO) and 5 A (NC) @ 240 V AC / 24 V DC			
	Incandescent lamps	1000 W			
	Inductive load ($\operatorname{Cos} \varnothing=0.6)$	6 A@ 250 V AC			
Minimum switching load		40 mA at 24 V DC			
Mechanical life		50×10^{3}			
Electrical life		30,000 cycles @ rated load			
Minimum switching time		1 min			1 second
Utilization category:	AC-15	Ue Rated voltage (V): 120/240, le Rated current (A): 3.0/1.5			
	DC-13	Ue Rated voltage (V): 24/125/250, le Rated current (A): 2.0/0.22/0.1			
Clock accuracy		$\pm 2 \mathrm{~s} /$ day max. over the operating temperature range			
Operating temperature range		$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$			
Humidity (Non-condensing)		95\% Rh			
Maximum operating altitude		2000 m			
Degree of protection		IP20 for terminals, IP40 for enclosure			
Mounting		Base/DIN rail			
Enclosure		Flame retardant UL 94-V0			
Weight (unpacked)		110 gms (approx)			
Certification		$C \in \text { c! }_{\text {USTED }}$			

Timing Devices \& Supply Monitors

Time Switches

Astro Mini

- Astronomical time switch in 35 mm size
- Latitude / longitude precise to the minute with time zone
- Sunrise / sunset or twilight rise / set trigger modes
- DST, Offset, OFF hours, weekly OFF features
- 12 / 24 hour display format
- 6 years battery reserve
- Easy manual override
- Ideal for outdoor \& street lighting application

Description	Cat. No.
Astro Mini, $110-240$ V AC 1 Phase 2 Wire $(50 / 60 \mathrm{~Hz}), 1 \mathrm{C} / \mathrm{O}($ SPDT $)$	T2DDT7

Connection Diagrams

Overall Dimensions

Operational Modes

Trigger Modes: The output can be programmed to switch ON/OFF at either sunrise / sunset or Twilight rise / set. The time settings of all outputs can either be based on sunrise / sunset or twilight. The trigger mode SRISE / SET will provide the reference time from sunrise / sunset, while the trigger mode TWILIGHT will provide the reference time from start / end of twilight.

OFFSET: The OFFSET feature is used to switch ON the output before or after sunset or switch OFF the output before or after sunrise. It may be necessary to have an output action before or after some time of sunrise / sunset. This OFFSET from sunrise / sunset can be achieved using OFFSET feature of the ASTRO Mini that allows OFFSET upto 99 minutes.

OFF-Hours: The OFF-Hours feature is used to switch OFF the output for a particular time period on daily basis. For example, OFF-Hours from 23:00 to 02:00 will switch the output OFF for three hours everyday.

Weekly OFF: The Weekly OFF feature is used to switch off the outputs during weekends or weekly off or weekly off days. This feature allows to define the Weekly off days including the start and end time. However ASTRO allows to program weekly off day (s) and related begin / end time. This feature offers energy savings by switching an output off on weekly-off day (s).

Day-light Saving Time (DST): DST is the period in which clocks in certain countries are set one hour or more ahead of standard time to effectively use natural daylight. ASTRO provides settings to easily define DST start and end months and DST offset time to effectively manage the shifting of clock year after year without any manual intervention. This is applicable for European countries only.

Timing Devices \& Supply Monitors

Time Switches
Astro Mini

Cat. No.		T2DDT7
Supply voltage (品)		110 to 240 V AC (-20\% to +10\%) 50/60 Hz
Power consumption (Max.)		6 VA
Battery backup		Approx 6 years running reserve
LED indication		Red LED for Relay Status
Clock format		Either AM / PM 12 h or 24 h Clock
Reset		Programs and clock are reset to default
Modes		Auto ON, Auto OFF, Auto
Programming		Based on: 1) Latitude / Longitude precision to the minute, with time zone
		2) Option for both sunrise / set \& twilight rise/set
		3) DST feature - 1 hour (with indication on the screen)
		4) Weekly OFF
		5) Offset facility
		6) OFF hours
Contact arrangement		$1 \mathrm{C} / \mathrm{O}$ (SPDT)
Contact rating	Resistive	16 A (NO) and $5 \mathrm{~A}(\mathrm{NC}) @ 240 \mathrm{~V} \mathrm{AC} \mathrm{/} 24 \mathrm{~V}$ DC
	Incandescent lamps	1000 W
	Inductive load ($\operatorname{Cos} \varnothing=0.6)$	6 A @ 250 V AC
Minimum switching load		40 mA at 24 V DC
Mechanical life		50×10^{3}
Electrical life		30,000 cycles @ rated load
Minimum switching time		1 min
Utilization category	AC-15	Ue Rated voltage (V): 120 / 240, le Rated current (A): 3.0 / 1.5
	DC-13	Ue Rated voltage (V): 24 / 125 / 250, le Rated current (A): 2.0 / 0.22 / 0.1
Clock accuracy		$\pm 1 \mathrm{~s} /$ day @ $25^{\circ} \mathrm{C}$
Operating temperature range		$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Humidity (Non-condensing)		95\% Rh
Maximum operating altitude		2000 m
Degree of protection		IP20 for terminals, IP40 for enclosure
Mounting		Base/DIN rail
Enclosure		Flame retardant UL 94-V0
Weight (unpacked)		110 gms (approx)
Certification		C

Timing Devices \& Supply Monitors

Time Switches

Astro

- Sunrise / sunset or twilight trigger mode
- ON / OFF / Pulse
- Midnight off hours selectable
- OFF-hours feature to alternate channel on alternate days
- Turn off outputs on weekly off-days in offices
- Automatic offset change for specified period
- Easy, fast and single key press manual override
- Designed for lighting applications

- Modbus communication for 3 phase version

Description				Cat. No.
Astro time switch, 110-240 V AC $(50-60 \mathrm{~Hz}), 1$ Phase 2 Wire, 2 NO (SPST)	T2DDT0			
Astro time switch, 110-240 V AC $(50-60 \mathrm{~Hz})$, 3 Phase 4 Wire (P-N), 3 NO (SPST)	T3DDT0			
Accessories for Astro	Software on PC	TGDDT6		
	Serial interface cable	GFDNN2S		
	Memory card	GFDNN3M		

Connection Diagrams

For: T3DDT0

Overall Dimensions

Additional Modes of Operation

Astro has following modes of operations in addition to Astro Mini's operational modes.
Operating Mode: ASTRO has three operating mode ON, OFF, and PULSE. An 'ON' or 'OFF' op-mode causes an output to be turned 'ON' or 'OFF' with respect to sunrise / sunset. APULSE op-mode is used to have an output ON for few seconds from a particular time.

Season Mode: During rainy season or in cloudy atmosphere, sunlight may be insufficient. Hence different time offset needs be programmed to control light switching. User can program period of such season and the related time-offset. This feature helps switch lights early with respect to sun rise / set and automatically move back to original settings after the season period.

OFFSET: It may be necessary to have an output action before or after some time of sunrise / sunset. This offset from sunrise / sunset can be achieved using OFFSET feature of the ASTRO. It allows offset upto \pm 10:59 hrs.
Alternate Mode: In this mode, the off-hours feature is applied to alternate output on alternate days. This mode is useful to save energy due to off-hours feature and is useful to maximize load's life due to alternate action.

UV/OV Mode: When Under / Over Voltage condition prevails, load can be tripped off thereby protecting load from damage due to extreme voltage irregularities. Users can set Under \& Over Voltage as per their requirement.

Timing Devices \& Supply Monitors

Time Switches
Astro

Cat. No.	T2DDT0	T3DDT0
Supply voltage (Un)	110-240 V AC (-20\% to +15\%), 50/60 Hz (1 Phase, 2 Wire)	$110-240 \text { V AC }(-20 \% \text { to }+15 \%), 50 / 60 \mathrm{~Hz}$ (3 Phase, 4 Wire)
Power consumption	8 VA @ 300 V AC	
Operating temperature	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
Switching contacts	2 NO	3 NO
Contact rating	8 A (Res.) @ 240 V AC and 5A (Res.) @ 30 V DC	
Power reserve (For clock only)	7 Years	
Utilization category	Ue Rated voltage (V): 120/240, le Rated current (A): 3.0/1.5	
	Ue Rated voltage (V): 24/125/250, le Rated current (A): 2.0/0.22/0.1	
Shortest switching time (Daily)	1 Minute	
Clock deviation (max)	± 1 second per day over the operating temperature range	
Geographical Co-ordinates	Resolution $1^{\circ} 1^{\prime}$	
DST	Programmable	
Manual override	Provided use keys on keypad	
Display	Backlit LC text display for diagnostic view	
Degree of protection	IP20 for terminals, IP40 for enclosure	
Mechanical life	10 million	
Electrical life	0.1 million	
Under/Over voltage (UV/OV) trip value	Not applicable	Settable UV: 0-220 V and OV: 130-330 V
Trip time for UV/OV	Not applicable	5-16 seconds
Recovery time	Not applicable	1-4 seconds
Mounting	Base/DIN rail	
Dimension (in mm)	$72 \times 90 \times 67$	
Weight (unpacked)	190 gms (approx)	208 gms (approx)
Certification	$C \in \underset{\text { © UTH }}{\text { UStep }}$	

Timing Devices \& Supply Monitors

Time Switches

Astro using GSM Technology

- Energy meter functionality. Parameter like load current, supply voltage, power, energy can be known remotely
- ASTRO parameters set remotely using SMS queries. i.e. output mode, offset hrs etc, UV, OV settings
- Relay output can be override remotely using SMS query
- With the help of 'Auto Error Code Update' following onsite errors can be known remotely during output event
- Under voltage

- Over voltage
- Over current
- Output actuator short
- Load open

	Description
Astro GSM module (GSM - ERT5), Remote side	Cat. No.
Communication cable (TTL - TTL) between Astro \& GSM module	19D20B00
Surge suppressor	19A1000B
Windows based application software for Astro	19D2000C

Connection Diagrams

Time Switches
Astro using GSM Technology

Cat. No.	19D20B00 (ERT 5)	19C20C00
Supply voltage (ヵ)	240 V AC (3 Phase, 4 Wire)	110-240 V AC (1 Phase)
Supply variation	-30% to $+25 \%$	
Frequency	$50 / 60 \mathrm{~Hz}$	
Active phase selection	Yes	
Operating temperature	$-15^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	
GSM type	Dual band 900 / 1800 GSM	
GPRS packet data	Class 10 coding scheme	
AT Command set suitability	N. A.	Yes
SMS type functionality	Data call through GSM, SMS	GSM 7.05 \& 7.07
SIM holder	Text, Cell broadcast	
Antenna	Connected with the product	
Antenna impedance	50	
Energy measurement	Yes	
Energy measurement accuracy	Class 0.5	
Current sensing range	5 A	
CT ratio	Settable upto 40	
LED indications	Tx, Rx, Network, Power, Pulse out	
Pulse out rate	3200 pulses / kWh	
Auxiliary output	12 V DC, 200 mA	
General port connectivity		TTL port for connecting time-switch (Astro) USB through USB interface cable GFDNN1, RS 232 through serial interface GFDNN2S, RS 485 through TTL-RS485 converter G7XDTR4"
Mounting	Base/DIN rail	
Enclosure	Flame retardant UL 94-V0	
Dimension (W x H \times) (in mm)	$72 \times 90 \times 67$	
Weight (unpacked)	$190 \text { gms (approx) }$	
Certification	$\left(\in \bigcup_{\text {Us }}\right.$	

Note:

1. ERT5 can measure maximum 5 A current.
2. Maximum current measurement limit for ERT-5 is 200 A .

Eg. For CT selection if current required to be measured is upto 200 A then CT of 200:5 A (CT ratio 40) needs to be used.

Timing Devices \& Supply Monitors

Timers

Micon 175

- Compact 17.5 mm wide
- Multiple timing ranges
- Low power consumption
- LED indication for power and relay status
- DIN rail and base mountable
- Integrated dual voltage selection

Description	Cat. No.
ON delay 0.3 sec - 30 hrs 240 V AC / 24 V AC/DC, 1 C/O, Base/DIN	12ODT4
ON delay 0.3 sec - 30 hrs 110 V AC / 24 V AC/DC, 1 C/O, Base/DIN	110DT4
ON delay $0.3 \mathrm{sec}-30 \mathrm{hrs} 12 \mathrm{~V}$ DC, $1 \mathrm{C} / \mathrm{O}$, Base/DIN	150DT4
One shot $0.3 \mathrm{sec}-30 \mathrm{hrs} 240 \mathrm{~V}$ AC / 24 V AC/DC, 1 C/O, Base/DIN	12BDT4
One shot $0.3 \mathrm{sec}-30 \mathrm{hrs} 110 \mathrm{~V}$ AC / 24 V AC/DC, $1 \mathrm{C} / \mathrm{O}$, Base/DIN	11BDT4
One shot $0.3 \mathrm{sec}-30 \mathrm{hrs} 12 \mathrm{~V}$ DC, $1 \mathrm{C} / \mathrm{O}$, Base/DIN	15BDT4
Star delta timer, $3 \mathrm{sec}-120 \mathrm{sec}, 240 \mathrm{VAC}, 1 \mathrm{NO}$ (Star) + 1 NO (Delta), Base/DIN	12SDT0
Star delta timer, $3 \mathrm{sec}-120 \mathrm{sec}, 240-415$ V AC, 1NO (Star) + 1 NO (Delta), Base/DIN	14SDT1S
Multifunction timer 10 functions $0.1 \mathrm{~s}-100 \mathrm{~h} 12-240 \mathrm{~V}$ AC/DC 1C/O Base/DIN	1CMDT0
Asymmetrical ON / OFF \& OFF / ON $0.1 \mathrm{sec}-100 \mathrm{hrs}$, 12-240 V AC/DC, 1 C/O, Base/DIN	1CJDT0

Timing Diagrams

ON Delay

ONE Shot

$\mathrm{S}=$ Supply
$R=$ Relay
Star Delta Timer

Connection Diagrams

1CMDT0

Overall Dimensions

Timing Devices \& Supply Monitors

Timers
Micon 175

Cat. No.	120DT4	110DT4	150DT4	12BDT4	11BDT4	15BDT4
Nominal supply (Ur)	$240 \text { V AC/ }$ 24 V DC/DC, $50 / 60 \mathrm{~Hz}$	110 V AC/ 24 V AC/DC, $50 / 60 \mathrm{~Hz}$	12 V DC	$240 \text { V AC/ }$ 24 V DC/DC, $50 / 60 \mathrm{~Hz}$	110 V AC/ 24 V AC/DC, $50 / 60 \mathrm{~Hz}$	12 V DC
Limits	-20% to 10% of Ur					
Power consumption	15 VA					
Contact arrangement	$1 \mathrm{C} / \mathrm{O}$					
Contact rating	240 V AC/ 28 V DC @ 5 A (resistive)					
Mechanical life	5×10^{6} operations (At no load \& max switching frequency)					
Electrical life a. 240 V AC pf $=1.0$, rated max load current	1×10^{5} operations					
b. 240 V AC, pf= 0.4 , rated max load current	4×10^{4} operations					
c. $30 \mathrm{VDC}, \mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$	6×10^{4} operations					
Switching frequency (Max)	1000 operations/hr					
Status indication on front panel	Red LED: Relay ON					
Modes available	ON Delay			One Shot		
Timing ranges 6 Ranges	$3 \mathrm{~s}-30 \mathrm{~s}, 3 \mathrm{~m}-30 \mathrm{~m}, 3 \mathrm{hr}-30 \mathrm{hr}$					
Setting accuracy	$\pm 5 \%$ of full scale					
Repeat accuracy	$\pm 1 \%$					
Variation in timing due to voltage change	$\pm 2 \%$					
Variation in timing due to temperature change	$\pm 5 \%$					
Reset time	$100 \mathrm{msec}(\max)$					
Supply indication on front panel	Green LED: Power ON					
Mounting	Base/DIN rail (35 mm sym.)					
Dimensions	$17.5{ }_{-0.0}^{+0.5}(\mathrm{~W}) \times 65.0$ (H) $\times 90.0$ (D) mm					
Weight (unpacked)	75 gms (approx)					
Certification	$c \in \triangle$					

Timing Devices \& Supply Monitors

Timers

Micon 175
Functional Diagrams For 1CMDT0

SIGNAL ON DELAY [stn]

On application of input signal, the preset delay time period starts. On completion of the preset time, the output is switched ON and remains ON till the input signal is present.

CYCLIC ON/OFF [cnf]

On application of supply voltage, the output is initially switched ON for the preset time duration (T) after which it is switched OFF for the same time duration (T). This cycle continues till the power supply is present.

CYCLIC OFF/ON [cfn]

On application of supply voltage, the output is initially switched OFF for the preset time duration (T) after which it is switched ON for the same time duration (T). This cycle continues till the power supply is present.

SIGNAL
OFF DELAY [sf]

On application of input signal to the timer, the output is immediately switched ON. When the input signal is switched OFF, the preset time delay period starts. On completion of the time period the output is switched OFF.

SIGNAL OFF/ON [sfn]

On application of input signal to the timer, the preset delay time period (T) starts. On completion of the time preset time, the output is switched ON When the input signal is switched OFF, again the preset time delay period (T) starts. On completion of the time period the output is switched OFF.

Derived Modes

Select mode, 'Signal ON Delay' and short the connection between A1 - B1 before power ON Select mode, 'Accumulative Delay ON Signal' and keep the connection between A1-B1 open.

ON DELAY

When supply power is applied to the timer, the preset delay time period starts. On completion of the preset time, the output is switched ON and remains ON till the input supply is present.
accumulative delay On SIGNAL [san]

On application of supply voltage, the preset delay time period starts. If input signal is applied during this period, the preset time stops and resumes only when the input signal is removed. On completion of the preset time, the output is switched ON.

IMPULSE ON/OFF [inf]

On application or removal of input signal to the timer, the output is immediately switched ON for the preset time duration (T). If the state of the input signal is changed during the preset time, the output does not change state only the time is reset.

```
LEADING EDGE IMPULSE [iL]
```


When input signal is applied to the timer the output is immediately switched ON. The output remains ON for the preset time duration (T) after which it is switched OFF. If the input signal is removed during the preset time, the output is immediately switched OFF.

TRAILING EDGE IMPULSE [it]

When the input signal to the timer is removed, the output is immediately switched ON for the preset time duration (T) after which it is switched OFF. If the input signal is applied during the preset time, the output is immediately switched OFF.

LEADING EDGE
 BISTABLE [sbi]

On application of input signal to the timer, the output is switched ON and remains ON even after the input signal is removed. On subsequent application of input signal, the output keeps on changing its state.

Select mode, "Leading Edge Impulse" and short the connection between A1 \& B1.

INTERVAL

When supply power is applied to the timer, the output is instantly switched ON. On completion of the preset time, the output is switched OFF.

Timing Devices \& Supply Monitors

Timers

Micon 175

Cat. No.	12SDT0	14SDT1S
Timer description	Star delta timer	
Nominal supply (Ur)	240 V AC, 50/60 Hz	$\begin{aligned} & 240-415 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Limits	-20% to 10% of Ur	
Power consumption	8 VA	
Contact arrangement	Star-1 NO, Delta - 1NO	
Contact rating	240 V AC / 28 V DC @ 5 A (resistive)	
Mechanical life	5×10^{6} operations (At no load \& max switching frequency)	
Electrical life	1×10^{5} operations	
Status indication on front panel	Red LED 1: Star ON, Red LED 2: Delta ON	
Timing range	3 s to 120 s	3 s to 30 s
Pause time	60 ms	
Reset time	150 ms (max)	
Setting accuracy	$\pm 5 \%$ of Full scale	
Repeat accuracy	$\pm 1 \%$	
Degree of protection	IP20 for terminals, IP40 for enclosure	
Mounting	Base/DIN rail	
Dimensions	17.5 (W) $\times 65.0$ (H) $\times 90.0$ (D) mm	
Weight (unpacked)	75 gms (approx)	
Certification	C	

Cat. No.	1CMDT0	1CJDT0
Timer description	Multi function timer	Assymetrical timer
Modes	1) Signal ON delay	1) Assymterical ON / OFF
	2) Cyclic ON / OFF	2) Assymterical OFF / ON
	3) Cyclic OFF / ON	
	4) Signal OFF delay	
	5) Signal OFF / ON	
	6) Accumulative delay on signal	
	7) Impulse ON / OFF	
	8) Leading edge impulse	
	9) Trailing edge impulse	
	10) Leading edge bi-stable	
Derived modes	ON Delay, Interval	NA
Nominal supply (Ur)	12-240 V AC, 50/60 Hz	
Limits	-15% to $+10 \%$ of Ur	
Power consumption	2 VA	
Contact arrangement	1 CO	
Contact rating	240 V AC / 28 V DC @ 5 A (resistive)	
Mechanical life	5×10^{6} operations (At no load \& max switching frequency)	
Electrical life	1×10^{5} operations	
Status indication ON	Green LED: Power ON,	
Front panel	Yellow LED: Relay ON	
Timing range	0.1 s to 100 h	
Reset time	200 ms (max)	
Setting accuracy	$\pm 5 \%$ of full scale	
Repeat accuracy	$\pm 1 \%$	
Degree of protection	IP20 for terminals, IP40 for enclosure	
Mounting	Base/DIN rail	
Dimensions	17.5 (W) $\times 65.0$ (H) $\times 90.0$ (D) mm	
Weight (unpacked)	75 gms (approx)	
Certification	C	

Timing Devices \& Supply Monitors

Timers

Micon 225

- Compact 22.5 mm wide Base/DIN rail Timer
- Multi-voltage, Multi-function \& Multi-range timers
- Time range - 0.1 sec to 10 hrs
- Flush knobs for better security
- Finger proof terminals (IP20)

Description	Cat. No.
Multifunction multirange $0.1 \mathrm{sec}-10 \mathrm{hrs}$, 24-240 V AC/DC, $2 \mathrm{C} / \mathrm{O}$, Base/DIN	2A5DT5
Star delta timer, $0.3 \mathrm{sec}-120 \mathrm{sec}, 24-240 \mathrm{~V}$ AC/DC, 1NO (Star) + 1NO (Delta), Base/DIN	2ASDT0
Star delta timer, $0.3 \mathrm{sec}-120 \mathrm{sec}, 240-415 \mathrm{VAC}, 1 \mathrm{NO}$ (Star) + 1NO (Delta), Base/DIN	2BSDT0
True OFF delay 0.6-600 sec, $24-240 \mathrm{~V}$ AC/DC, $2 \mathrm{C} / \mathrm{O}$	23GDT0
Multifunction timer 6 functions $0.1 \mathrm{sec}-10 \mathrm{hrs}$, $24-240 \mathrm{~V}$ AC/DC 2C/O (1 Inst + 1 Delayed for 6th mode) Base/DIN	2A6DT6
Signal base multi function - Multirange $0.1 \mathrm{sec}-10 \mathrm{hrs}$, $24-240 \mathrm{~V}$ AC/DC, 1C/O, Base/DIN	2ANDT0
ON delay $0.1 \mathrm{sec}-10 \mathrm{hrs}, 24-240 \mathrm{~V}$ AC/DC, $2 \mathrm{C} / \mathrm{O}$, Base/DIN	2A0DT5
Asymmetrical ON / OFF $0.1 \mathrm{sec}-10 \mathrm{hrs}, 24-240 \mathrm{~V}$ AC/DC, $2 \mathrm{C} / \mathrm{O}$, Base/DIN	2AADT5
Multifunction multirange $0.1 \mathrm{sec}-10 \mathrm{hrs}, 240-415 \mathrm{~V} \mathrm{AC}, 2 \mathrm{C} / \mathrm{O}$, Base/DIN	2B5DT5
Multifunction timer 6 functions $0.1 \mathrm{sec}-10 \mathrm{hrs}, 240-415 \mathrm{~V}$ AC 2C/O (1 Inst + 1 Delayed for 6th mode) Base/DIN	2B6DT6
Multifunction timer 17 functions 0.1 s to 120 days, 24-240 VAC/DC, 1 Inst + 1 Delayed	2A8DT6

Connection Diagrams

2ASDT0, 2BSDT0

2A0DT5, 2AADT5, 2A5DT5, 2B5DT5, 2A6DT6, 2B6DT6, 23GDT0,

2ANDT0

Overall Dimensions

Timing Devices \& Supply Monitors

Timers
Micon 225

Cat. No.		2A5DT5	2ASDT0	2BSDT0	23GDT0
Functions		Multi-function with 5 modes	Star - Delta		True OFF delay
Supply voltage (守)		24-240 V AC/DC	24-240 V AC/DC	240-415 V AC	24-240 V AC/DC
Supply variation		-20% to $+10 \%$ (of宁)			
Supply frequency		$50 / 60 \mathrm{~Hz}$			
Power consumption (Max.)		4 VA	4 VA	7 VA	2.5 VA
Setting accuracy		$\pm 5 \%$ of full scale			$\pm 10 \%$ of full scale
Repeat accuracy		+1\%			
Initiate time		Max. 100 ms	Max. 100 ms		
Reset time		Max. 200 ms	Max. 200 ms		
Set time (Ts)		0.1s-10 h	3s-120s		0.6-600 s
Pause time (P)		NA	$60 \mathrm{~ms}, 90 \mathrm{~ms}$, $120 \mathrm{~ms}, 150 \mathrm{~ms}$		NA
Operating temperature		$-15^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$			
Minimum energizing time		NA			1 sec
Max. operating altitude		2000 m			
Humidity		95\% (Rh)			
LED indication		Green LED : Power ON; Red: Relay ON	Star relay ON; Delta relay ON		Green LED: Power ON
Housing		Flame retardant UL 94-V0			
Dimensions in mm (WxHxD)		$22.5 \times 75 \times 100.5$			
Mounting		Base/DIN rail			
Contact rating		5 A (Res.) @ 240 V AC / 28 V DC			
Mechanical life		10 million			
Electrical life		0.1 million			
Switching frequency		Electrical: 1800 operations / h at rated load			
Utilization category	AC-15	Rated voltage (Ue): $230 \mathrm{~V} / 125 \mathrm{~V}$; Rated current (le): $1.3 \mathrm{~A} / 2.5 \mathrm{~A}$			
	DC-13	Rated voltage (Ue): $250 \mathrm{~V} / 120 \mathrm{~V} / 24 \mathrm{~V}$; Rated current (le): $0.1 \mathrm{~A} / 0.22 \mathrm{~A} / 2 \mathrm{~A}$			
Contact arrangement		$2 \mathrm{C} / \mathrm{O}$	$1 \mathrm{NO}+1 \mathrm{NO}$		$2 \mathrm{C} / \mathrm{O}$
Degree of protection		IP20 for terminal, IP40 for housing			
Weight (unpacked)		130 gms (approx)			120 gms (approx)
Certification		C \times			

Timing Devices \& Supply Monitors

Timers

Micon 225
Timing Diagram

2A5DT5, 2B6DT6

ON DELAY

CYCLIC OFF/ON

2ANDT0

SIGNAL ON DELAY

LEADING EDGE IMPULSE

2ASDT0, 2BSDT0

STAR - DELTA

INTERVAL

ONE SHOT

ACCUMULATIVE ON DELAY

ON DELAY

23GDT0

TRUE OFF DELAY

Star delta connection

Recommended Star - Delta Control Circuit:

(Below circuit is for STAR - DELTA Timer with 240 V AC Supply)

CYCLIC ON/OFF

ON DELAY (1 INST. + 1 DLYD.)*

* Available only with Cat. No. 2A6DT6 \& 2B6DT6

SIGNAL OFF DELAY

SIGNAL OFF/ON DELAY

INTERVAL

1) F1	Mains Protection Fuse
2) O.L.R	- Over Load Relay
3) M1	- First 'NO' Contactor Main Contactor
4) M2	- Second 'NO' Contactor Main Contactor
5) M	- Main Contact of driving Motor
6) λ_{C}	'NO' Contact
7) $\lambda^{\text {C1 }}$	'NO' Contact of Star Contactor
8) $\lambda_{C 2}$	'NO' Contactor Star Contactor
9) Δ_{C}	Delta Contactor
10) ${ }^{\Delta}{ }_{\text {C1 }}$	- 'NC' Contactor Delta Contactor
11) ${ }_{T}$	- Star Contact of Timer (λ - Δ)
12) Δ_{T}	- Delta Contact of Timer ($\lambda-\Delta$)

Timing Devices \& Supply Monitors

Timers

Micon 225

Cat. No.	2A6DT6	2ANDTO	2A0DT5	2AADT5	2B5DT5	2B6DT6
Functions	Multifunction (6 modes)	Signal based multifunction	ON delay	Asymmetric ON OFF timer	Multifunction timer 5 mode	Multifunction (6 modes)
Supply voltage	240-415 V AC	24-240 V AC/DC	24-240 V AC/DC	24-240 V AC/DC	240-415 V AC	240-415 V AC
Relay output	$\begin{aligned} & 2 \text { CO, 1 Inst+1 } \\ & \text { delayed } \\ & \text { (for } 6 \text { mode) } \end{aligned}$	$1 \mathrm{C} / \mathrm{O}$	$2 \mathrm{C} / \mathrm{O}$	$2 \mathrm{C} / \mathrm{O}$	$2 \mathrm{C} / \mathrm{O}$	$\begin{aligned} & 2 \text { CO, 1 Inst+1 } \\ & \text { delayed } \\ & \text { (for } 6 \text { mode) } \end{aligned}$
Power consumption (Max.)	7 VA	4 VA	4 VA	4 VA	7 VA	7 VA

* Other features are same as given in previous Micon 225 table on page 108.

Operating Modes / Functions of Timers

吊: SUPPLY, S: SIGNAL, R: RELAY OUTPUT,
T: SET TIME, TP: PAUSE TIME, Ton: ON TIME, Toff: OFF TIME, $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$: POWER DOWN REGION

ON DELAY (DELAY ON ENERGIZATION):
On application of supply voltage to the timer, the preset delay time period starts. On completion of the preset time, the output is switched ON and remains ON till the supply voltage is present.

INTERVAL (IMPULSE ON):

On application of supply voltage to the timer, the output is instantly switched ON for the preset time period. On completion of the preset time, the output is switched OFF.

CYCLIC ON/OFF (SYMMETRIC):

On application switched OFF for the preset time duration (T) after which it is switched ON for the same time duration (T). This cycle repeats and continues till the supply is present.

ONDELAY RETENTIVE(NO VOLT):

On application of supply voltage to the timer, the prese delay time period starts. On completion of the preset time, the output is switched ON and remains. If power fails during preset time duration, the elapsed time is retained by timer. Upon resumption of power, the remaining cycle continues.

STAR DELTA

On application of supply voltage, the output Star relay energizes instantly. On completion of the preset delay time, the output Delta relay energizes after a fixed pause time. This pause time (60, 90, 120, 150 ms provides the shortest possible 'current off' pause and simultaneously ensures smooth change over.

ONE SHOT (PULSE):
On application of supply Voltage to the timer, the preset delay time period starts. On completion of the preset time, the output is switched ON for a period of one second after which it is switched OFF.

CYCLIC ON/OFF (SYMMETRIC):

On application of supply voltage, the output is initially switched ON for the preset time duration (T) after which it is switched OFF for the same time duration (T). This cycle repeats and continues till the supply is present

TRUE OFF DELAY (POWER OFF DELAY):
On application of supply voltage, the output relay energizes instantly. On removal of supply voltage to the timer, the preset delay time period starts. On completion of the preset time, the output is switched OFF.

ASYMMETRIC ON-OFF / CYCLIC ON-OFF

 (ASYMMETRIC):On application of supply voltage, the output is initially switched ON for the preset 'ON' time duration (T) after which it is switched OFF for the preset 'OFF' time duration (T). This cycle repeats and continues till the supply is present. The ON time \& OFF time are set independently.

SIGNAL ON DELAY:
On application of input signal to the timer, the preset delay time period starts. On completion of the preset time, the output is switched ON and remains ON till the input signal is present.

SIGNAL OFF DELAY:

On application of inputs signal the output relay energizes instantly. On removal of input signal to the timer, the preset delay time period starts. On completion of the preset time, the output is switched OFF.

Timing Devices \& Supply Monitors

Timers

Micon 225 Signal Based Multi - Function Timer

- Multi-function with Signal Start and Supply Start
- 16 Timing Functions selected by DIP switch
- Two independent relay outputs with either both relays timed delay or one timed delay and one instantaneous
- Wide Input Signal \& Supply range - 24-240V AC/DC
- Wide Timing Range -0.1 s to 120 days

Functional Diagrams

中 : Supply Voltage, S: Input Signal, R: Relay Output, R(I): Instant Relay, R(D): Delayed Relay
T: Preset Time, TON: Preset ON Time, TOFF: Preset OFF Time, T-a: Timing Break Before completion

ON DELAY (Non Signal Based)

When supply is applied, timing starts and after the preset time duration ' T ', output switches ON and remains ON till the supply is present.

SIGNAL ON DELAY TYPE 1
When the input supply \& signal are applied, timing starts and after preset time duration ' T ' output switches ON \& remains ON till the supply is present. Changing the state of signal during ' T ' does not affect the output

SIGNAL ON DELAY

Time commences as supply and signal is present. When input signal is opened the timing resets. The output is switched ON at the end of the preset time duration ' T '. When output is ON if signal is opened then the output switches OFF

INVERTED SIGNAL ON DELAY

When supply is applied and signal is opened, preset time duration 'T starts. On completion of the ' T, output switches ON. If the signal is closed during timing ' T ', timing resets.

INTERVAL

When supply voltage is applied \& signal is closed, output switches ON \& timing function starts. If signal is opened and closed during the preset time, the iming restarts. After preset time 'T' has elapsed, the output switches OFF.

IEADING EDGE IMPULSE

When the supply applied and signal is closed, the output switches ON for preset time 'T'. After the completion of preset time ' T ', the output switches OFF. If signal closed or opened during preset time duration ' T ', the output remains unaffected.

TRAILING EDGE IMPULSE

When supply voltage is applied and signal is pened, output switches ON for the preset time duration ' T '. After completion of preset time ' T ', output switches OFF. If the signal is closed during preset timing ' T ', output switches OFF \& timing stops.

CYCLIC OFF/ON

When the supply applied and signal is closed, output switches OFF for the preset time duration ' T ' and then switches ON for preset time duration ' T '. This cycle repeats while the supply is present. Changing the state of signal during ' T ' does not affect the output.

CYCLIC ON/OFF

When the supply applied and signal is closed, output switches ON for the preset time duration ' T ' and then switches OFF for preset time duration 'T'. This cycle repeats while the supply is present. Changing the state of signal during ' T ' does not affect the output.

SIGNAL ON/ OFF Delay

Signal ON/OFF Delay: When the supply is applied and signal is closed, outputs switches ON after preset time 'T' signal is closed, outputs switches ON after preset time 'T.' ON immediately and OFF delay starts. Once this time period has elapsed the output switches OFF. During this OFF delay if signal is closed, the output switches OFF immediately and ON Delay restarts.

IMPULSE ON/OFF

When supply is applied and if signal closed or opened, output switches ON for Preset time duration 'T'. During time period ' T ',changing state of input signal does not affect the output but resets the timing.

ACCUMULATIVE DELAY ON SIGNAL

Accumulative Delay ON Signal: On application of the supply voltage, the preset timing commences. Whenever signal is closed, timing pauses \& resumes back only when the input signal is opened. The output switches ON at the end of the preset time duration 'T'.

DELAYED IMPULSE

Delayed Impulse: When supply voltage is applied and signal is closed, output switches ON at the end of the preset time 'TOFF'. Then the preset ON time 'TON' starts irrespective of the signal state and remains ON till the completion of preset time duration 'TON'. If signal closed during the timing 'TOFF', the timing restarts but the output state remains unaffected. The signal change does not have any effect during the timing period 'TON'.

ONE SHOT

One Shot: When the supply voltage is applied and signal is closed,timing starts and after the preset time duration'T output switches ON for One sec. only.

STEP MODE

Step Mode: When the supply voltage is applied and signal closed, output switches ON for preset time duration 'T', removal of the input signal during this time duration ' T ' does not affect the output state. But if the signal is closed during time duration 'T', output switches OFF.

SIGNAL OFF DELAY

Signal OFF Delay: When the supply is applied and signa is closed, output is switches ON. When signal is opened the preset timing commences and output is switches OFF at the end of time duration ' T '. If signal is closed during timing period, then timing stops and restarts when signal.

Timing Devices \& Supply Monitors

Timers
Micon 225 Signal Based Multi - Function Timer

Cat. No.		2A8DT6
Description		Multi-function timer with 16 timing functions (refer page 111)
Supply Voltage (吊)		24-240 VAC / DC
Supply Variation		- 20\% to +10\% (of 安)
Frequency		$50 / 60 \mathrm{~Hz}$
Power Consumption (Max.)		3 VA
Signal Voltage	Low Range (B1L-A2)	24-60V AC/DC
	High Range (B1H-A2)	85-265V AC, 100-265V DC
Signal Sensing Time		For AC Signals: 50 ms Max .
		For DC Signals: 20 ms Max .
Signal stabilization Delay		100 ms (Applicable at Power ON Only)
Setting Accuracy		$\pm 5 \%$ of Full scale
Repeat Accuracy		$\pm 1 \%$
Output	Relay Output	$1 \mathrm{C} / \mathrm{O}$ (Delayed) \& $1 \mathrm{C} / \mathrm{O}$ (Configurable as either Delayed or Instant)
	Contact Rating	5A @ 240 VAC / 28 VDC (Resistive)
	Electrical Life	1×10^{5}
	Mechanical Life	1×10^{7}
Set Time (Ts)		0.1 seconds to 120 Days
LED Indication on front panel		Green LED ON: Power ON, Amber LED ON :Relay ON for Delayed contact
Mounting		Base / DIN Rail
Max. Operating Altitude		2000 m
Housing		Flame retardant (UL 94-V0)
Operating Temperature		$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage Temperature		$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Dimension (W x H x D (inm)		$22.5 \times 83 \times 100.5$
Weight (unpacked)		130 g
Certification		(6
Degree of Protection		IP 20 for Terminals, IP 40 for Enclosure

Selection of Function:

Operating Mode \& timing can be selected by using DIP switches

Function		Function	
1234		1234	
$\square \square \square \square$	On Delay (Non Signal)	-■■■	Signal OFF Delay
■■	Signal On Delay Type 1	$\square \square \square$	Step Mode
	Signal On Delay	$\square \square \square$	One Shot
\square^{\square}	Inverted Signal On Delay	-	Delayed Impulse
	Interval	$\square \square \square$	Accumulative Delay On Signal
	Leading Edge Impulse		Impulse ON / OFF
\square	Trailing Edge Impulse		Signal ON / OFF Delay
\square^{\square}	Cyclic OFF / ON	-■■	Cyclic ON / OFF
$\frac{1 I}{5}+1 \mathrm{D} \text { or }$	2D Selection	Timing Mu 6	ultiplier Selection
	$11+1 D$ Operation		ming = 'T' X 't' X 1
\square	2 Delayed Operation	\square Tim	ming = 'T' X 't' X 12

Mounting Dimension (mm)

Connection Diagram

B1H/B1L

Timing Devices \& Supply Monitors

Timers

Motor Restart control Timer

- Single phase motor restart control timer with memory time
- Under voltage trip and ON delay

Description	Cat. No.
240 V AC, Motor restart control timer, 1C/O	$22 \mathrm{LDT0}$
110 V AC, Motor restart control timer, $1 \mathrm{C} / \mathrm{O}$	$23 L D T 0$

Working

The timer is used for instantaneous or delayed motor startup after a short-time power failure (max. 6 sec). The start occurs immediately if power supply is disrupted for less than 0.2 sec . If the power failure lasts longer, the relay activates its memory for a time that can be set to 0.2 to 6 sec , after which no automatic restart is possible.
If power supply is restored while the memory period is elapsing, the relay commands a motor restart with a delay time from power supply restoration that can be set to 0.2 to 60 sec . A system stop cancels the memory function after 50 ms , and therefore the stop signal should be on for at least this time. The relay is non-sensitive to any control voltage fluctuation or disruption during or after the motor stop.

Timing Diagrams

t: Power Fail Time; Td: Delay Time; Tm: Memory Time

Connection Diagram

22LDTO, 23LDT0

Overall Dimensions

Timing Devices \& Supply Monitors

Timers

Motor restart control Timer

Cat. No.		22LDT0	23LDT0
Nominal supply (Ur)		240 V AC, $50 / 60$ Hz	110 V AC, $50 / 60 \mathrm{~Hz}$
Limits		-20% to $+10 \%$ of Ur	
Power consumption		4 VA	
Contact arrangement		$1 \mathrm{C} / \mathrm{O}$	
Timing ranges		Memory time TM: 0.2 to 6 s , Delay time Td: 0.2 to 60 s	
Trip voltage		176 V AC ($\pm 6 \mathrm{~V}$)	$80 \mathrm{~V} \mathrm{AC} \mathrm{(} \pm 6 \mathrm{~V}$)
Hysteresis		4 V AC to 10 V AC	
Reset time		200 ms (max)	
Relay output		$1 \mathrm{C} / \mathrm{O}$	
Contact rating		240 V AC / 28 V DC @ 5 A (resistive)	
Mechanical life		1×10^{7} operations	
Electrical life		1×10^{5} operations	
Operating temperature		$-15^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	
LED indication		Green LED: Power ON, Red LED: Relay ON	
Utilization category	AC-15	Rated voltage (Ue): $120 / 240 \mathrm{~V}$, Rated current (le): $3.0 / 1.5 \mathrm{~A}$	
	DC-13	Rated voltage (Ue): 24/125/250 V, Rated current (le): 2.0/0.22/0.1 A	
Setting accuracy		$\pm 5 \%$ of full scale	
Repeat accuracy		$\pm 1 \%$	
Enclosure		Flame retardant UL 94-V0	
Degree of protection		IP20 for terminals, IP40 for enclosure	
Mounting		Base/DIN rail (35 mm sym.)	
Dimensions		$22.5 \times 75 \times 100.5(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}) \mathrm{mm}$	
Weight (unpacked)		130 gms (approx)	
Certification			

Timing Devices \& Supply Monitors

Timers

Brownout Timer

- Brownout Timer with 3 functions: ON Delay, Interval, Pulse
- Detects voltage dips and momentary loss of supply and resets the control panel
- LED indications for healthy and unhealthy conditions

Description	Cat. No.
ON delay 110 V AC $0.3-30 \mathrm{~s}$, 1C/O Base/DIN	13UDT0
Interval 110 V AC 0.3-30 s, 1C/O Base/DIN	13UDT1
ON delayed 220 V AC 0.3-30 s, 1C/O Base/DIN	17UDT0
Interval 220 V AC $0.3-30 \mathrm{~s}, 1 \mathrm{C} / \mathrm{O}$ Base/DIN	17UDT1
3 Functions 110 V AC $0.3-30 \mathrm{~s}, 1 \mathrm{C} / \mathrm{O}$ Base/DIN	23UDT0
3 Function 240 V AC $0.3-30 \mathrm{~s}, 1 \mathrm{C} / \mathrm{O}$ Base/DIN	27UDT0

Brownout

A dip in voltage causes electro-mechanical devices such as relays and contactors to drop out but electronic devices such as timers, programmable Relays, PLC's remain energized. As a result of this the switch sequence of the panel is lost. This can lock out all or a part of the control system causing the entire system to malfunction.

The Brownout timer also known as 'Mains restoration auto restart timer' is used for detection of voltage dips or momentary loss of supply known as Brownout and initiation of a control panel reset following the Brownout.

Timing Diagrams
23UDT0

ON DELAY

Connection Diagram

INTERVAL

PULSE

13UDT0, 13UDT1,
17UDT0, 17UDT1
23UDT0, 27UDT0

Timing Devices \& Supply Monitors

Timers

Brownout Timer

Cat. No.		13UDT0	13UDT1	17UDT0	17UDT1	23UDT0	27UDT0
Modes available		ON delay	Interval	ON delay	Interval	ON delay, Interval, P	
Nominal supply (Ur)		110 V AC, $50 / 60 \mathrm{~Hz}$		220 V AC, $50 / 60 \mathrm{~Hz}$		110 V AC, $50 / 60 \mathrm{~Hz}$	220 V AC, 50 Hz
Limits		-40\% to +10\% of Ur					
Power consumption		6 VA		10 VA		6 VA	10 VA
Contact arrangement		$1 \mathrm{C} / \mathrm{O}$					
Timing range		0.3 s to 30 s					
Contact rating		240 V AC/28 V DC @ 5 A (resistive)					
Initiate time		200 ms (max)					
Trip voltage		$81 \mathrm{~V}(\pm 6 \mathrm{~V})$		$168 \mathrm{~V}(\pm 6 \mathrm{~V})$		$81 \mathrm{~V}(\pm 6 \mathrm{~V})$	$168 \mathrm{~V}(\pm 6 \mathrm{~V})$
Recovery voltage		$96 \mathrm{~V}(\pm 4 \mathrm{~V})$		$184 \mathrm{~V}(\pm 4 \mathrm{~V})$		$96 \mathrm{~V}(\pm 4 \mathrm{~V})$	184 V ($\pm 4 \mathrm{~V}$)
Response time		Voltage interruptions: 15 ms (max)					
		Voltage dips: 30 ms (max)					
Mechanical life		1×10^{7} operations					
Electrical life		1×10^{5} operations					
Status indication on front panel		Healthy condition: Flashing, Unhealthy condition: Blinking					
LED colour		Amber		Red		Amber	Red
Utilization category	AC-15	Rated voltage (Ue): 120/240 V, Rated current (le): 3.0 / 1.5 A					
	DC-13	Rated voltage (Ue): 24/125/250 V, Rated current (le): 2.0 / 0.22 / 0.1 A					
Setting accuracy		$\pm 5 \%$ of full scale					
Repeat accuracy		$\pm 1 \%$					
Enclosure		Flame retardant UL 94-V0					
Degree of protection		IP20 for terminals, IP40 for enclosure					
Mounting		Base/DIN rail (35 mm sym.)					
Dimensions		$22.5 \times 75 \times 100.5$ (W x H x D) mm					
Weight (unpacked)		130 gms (approx)					
Certification		C \in					

Timing Devices \& Supply Monitors

Timers

Digicon

- Multimode timer
- Timing ranges from 0.1 sec to 999 hrs
- Wide supply
- Selectable up / down counting modes to show elapsed / remaining time
- 3 Digit LC display for preset time and run time
- LED indication of relay status
- Tamper proof with key lock function
- Finger proof terminals

- Compact size (17.5 mm single width module)

Description	Cat. No.
8 Functions, $0.1 \mathrm{sec}-999 \mathrm{hrs}, 24-240 \mathrm{~V} \mathrm{AC/DC} 1 \mathrm{C} /$,O Base/DIN mounting	V0DDTS
8 Functions, $0.1 \mathrm{sec}-999 \mathrm{hrs}, 24-240 \mathrm{~V} \mathrm{AC/DC}$,2 NO Base/DIN mounting	V0DDTD
17 Functions, $0.1 \mathrm{sec}-999 \mathrm{hrs}, 24-240 \mathrm{~V} \mathrm{AC/DC} 1 \mathrm{C} /$,O Base/DIN mounting	V0DDTS1
17 Functions, $0.1 \mathrm{sec}-999 \mathrm{hrs}, 24-240 \mathrm{~V} \mathrm{AC/DC}$,2 NO Base/DIN mounting	V0DDTD1

Connection Diagram

Overall Dimensions

Timing Diagrams for VODDTS \& VODDTD

Note: 1. For Power-On operation (P) connect the terminal B1 to A1 permanently.
2. If the Signal (S) changes during the Timer Duration (T), it does not change the output relay but re-triggering takes places and the timer duration is extended.

Timing Devices \& Supply Monitors

Timers

Digicon

Timing Devices \& Supply Monitors

Timers

Digicon

Timing Diagram For V0DDTS1 \& V0DDTD1

ON DELAY [0]

On application of supply voltage, the preset time duration (T) starts. On completion of the preset time, the output is switched ON and remains ON till the supply voltage is present.

CYCLIC OFF/ON
\{OFF Start, (Sym, Asym)\} [1]

On application of supply voltage, the output is initially switched OFF for the preset 'OFF' time duration (TOFF) after which it is switched ON for the preset 'ON' time duration (TON). This cycle repeats and continues till the supply is present.

CYCLIC ON/OFF

\{ON start, (Sym, Asym)\} [2]

On application of supply voltage, the output is initially switched ON for the preset 'ON' time duration (TON) after which it is switched OFF for the preset 'OFF' time duration (TOFF). This cycle repeats and continues till the supply is present.

IMPULSE ON
 ENERGIZING [3]

On application of supply voltage, the output is instantly switched ON for the preset time duration (T) after which it is switched OFF

accumulative delay ON SIGNAL [4]

On application of supply voltage, the preset timing duration commences. When input signal is applied, the timing pauses and resumes only when the input signal is removed. The output is switched ON at the end of the preset time duration (T).

ACCUMULATIVE DELAY ON INVERTED SIGNAL [5]

On application of supply voltage and input signal, the preset timing duration commences When the signal is removed the timing pauses and resumes when the signal is applied. The output is switched ON at the end of the preset time duration (T).

ACCUMULATIVE IMPULSE ON SIGNAL [6]

On application of supply voltage the output is switched ON \& the preset timing duration commences. When the signal is removed the timing pauses and resumes when the signal is applied. The output is switched OFF at the end of the preset time duration (T).

SIGNAL ON DELAY [7]

On application of input signal, the preset time duration (T) starts. On completion of the preset time, the output is switched ON and remains ON till the input signal is present

INVERTED SIGNAL

ON DELAY [8]

On application of supply voltage, the preset time duration (T) starts. When input signal is applied, the timing pauses \& resumes only when the signal is removed. On completion of the preset time, the output is switched ON

SIGNAL OFF DELAY [9]

On application of supply voltage and input signal, the output is switched ON. When the signal is removed the preset time duration commences \& the output is switched OFF at the end of the time duration.

IMPULSE ON/OFF [A]

On application or removal of input signal, the output is switched ON \& the preset time duration (T) starts. On completion of the time duration the output is switched OFF. When timing commences, changing the state of the input signal resets the time.

SIGNAL OFF/ON [b]

On application of input signal, the preset delay time period (T) starts. On completion of the preset time, the output is switched ON. On removal of input signal, the preset time period starts again and the output is switched ON when the preset time duration is complete.

LEADING EDGE
 IMPULSE1 [C]

On application of input signal the output is immediately switched ON. The output remains ON for the preset time duration (T) after which it is switched OFF. If the input signal is removed during the preset time, the output remains unaffected.

LEADING EDGE

IMPULSE2 [d]

On application of input signal the output is immediately switched ON. The output remains ON for the preset time duration (T) after which it is switched OFF. If the input signal is removed during the preset time, the output is immediately switched OFF.

TRAILING EDGE IMPULSE1 [E]

When the input signal to the timer is removed, the output is immediately switched ON for the preset time duration (T) after which it is switched OFF. If the input signal is applied during the preset time, the output is immediately switched OFF

TRAILING EDGE IMPULSE2 [F]

When the input signal to the timer is removed, the output is immediately switched ON for the preset time duration (T) after which it is switched OFF. If the input signal is applied during the preset time, the output remains unaffected

DELAYED IMPULSE [G]

On application of input signal, the preset 'OFF' time duration (TOFF) starts. the output is switched ON at the end of the preset 'OFF' time duration \& the preset 'ON' time duration commences irrespective of signal level and remains ON till the completion of 'ToN'.

官: Supply Voltage, S: Input Signal, R: Relay Output
T: Preset Time, T: Preset ON Time, T: Preset OFF Time

Timing Devices \& Supply Monitors

Timers

Digicon

Timing Devices \& Supply Monitors

Timers

EM series- Auto Reset Synchronous Timer

- Time delay is independent of normal voltage and temperature fluctuations
- Black pointer gives clear indication of time set on a calibrated dial while the red one indicates the time left complete the cycle

- Automatic reset on de-energisation of the clutch coil
- Base mounting or flush mounting versions
- No-volt feature is available

Connection Diagram

EM 1000

EM 2000

Overall Dimensions

Base Mounting

Note : Panel Cutout 91 mm Dia.

Timing Diagrams

ON Delay Retentive (No Volt)

Timing Devices \& Supply Monitors

Timers

EM series- Auto Reset Synchronous Timers
EM 1000

Supply variation	-20% to 10%
Frequency	$95 \%-105 \%$
Nominal consumption	10 V AC max.
Timing range	0.15 sec to 120 hrs
Repeat accuracy	$\pm 0.5 \%$ of FSR at constant frequency
	1 Ins t + 1 delayed -AgCdO
Contact rating	1 Ins + 2 delayed -AgCdO (Optional)
Switching frequency	6 A (resistive) @ 250 V AC
Operating temperature	3000 operations / hr (Max.)
Housing	$-5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
Dimension (W x H x D)	Conforms to IP30 - IS 13947
Mounting	$96 \times 96 \times 100$ (in mm)
Terminal connection	Flush \& Base
Protection	$1-2.5$ mm ${ }^{2}$ solid / stranded

EM 2000

Supply variation	-20% to 10%
Frequency	$95 \%-105 \%$
Timing range	1 sec to 120 sec
Accuracy:	
Repeat accuracy	$\pm 2 \%$ of Full scale range at constant frequency
Contact rating	1 delayed -AgCdO 2 delayed -AgCdO (optional) 5 A (resistive) @ 250 V AC
Switching frequency	1000 operations / hr (Max)
Operating temperature	$-5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
Housing	$\mathrm{Conforms} \mathrm{to} \mathrm{IP30-IS} \mathrm{13947}$
Dimension (W x H x D)	$55 \times 88 \times 106$ (in mm)
Mounting	Base/DIN mounting \& can be mounted on vertical plane with maximum inclination of 15° from vertical
Terminal connection	$1-2.5 \mathrm{~mm}{ }^{2}$ solid $/$ stranded
Protection	IP20

Timing Devices \& Supply Monitors

Supply Monitors
 SM 175

- Compact 17.5 mm wide
- Protects against Phase loss, Phase reversal \& Phase asymmetry
- Multi voltage: 3×208 to $3 \times 480 \mathrm{~V}$
- Selectable Under voltage / Over voltage \& Asymmetry
- LED Indications for all faults for changed in settings - during run time for better security
- Adjustable time delay
- 1 C/O configuration

	Description
$208-480$ V AC, Phase loss, Phase sequence monitoring, 1 C/O	Cat. No.
$208-480$ V AC. Phase loss, Phase sequence \& Phase asymmetry monitoring (fixed), 1 C/O	MK21D5
$208-480$ V AC, Phase loss, Phase sequence \& Phase asymmetry monitoring (variable), 1 C/O	MC21D5
$208-480$ V AC, Under/Over voltage, Phase loss, Phase sequence with selectable ON delay, 1 C/O	MA21DN
$208-480$ V AC, Under/Over voltage \& Single phasing preventer with selectable ON delay, 1 C/O	MD21DF
$208-480$ V AC, Under/Over voltage \& Single phasing preventer with selectable OFF delay, 1 C/O	MG21DH
	MG21DF

Connection Diagrams

Overall Dimensions

MC21D5, MK21D5, MG21DF, MD21DF, MG21DH, MA21DN

Timing Devices \＆Supply Monitors

Supply Monitors
SM 175

Cat．No．			MK21D5	MC21D5	MA21DN	MD21DF	MG21DH	MG21DF
Function			Phase loss and Phase sequence			Phase loss＋phase sequence＋ Over Voltage＋Under Voltage		
Supply Voltage（品）			208 to 480 V AC，3－Phase 3－Wire（－12\％to＋10\％）					
Frequency			$50 / 60 \mathrm{~Hz}$					
Power consumption			3 VA（Max．）					
Adjustable nominal voltage（听）			N．A．			208－220－380－400－415－440－480 V AC		
Trip levels	Under voltage		N．A．			$-2 \% \text { to }-20 \% \text { of }$		
	Over voltage		N．A．			2% to 20% of ¢	5% to 25% of ゅ	
	Asymmetry		N．A．	30\％fixed	5% to 15%	N．A．	10\％fixed	
Setting accuracy			$\pm 5 \%$ of full scale					
Time delay Setting accuracy $\pm 10 \%$ of Full scale	Operate time		500 ms fixed		5 s fixed	5 s fixed	（＜0．5 to 100）s	5 s fixed
	Release time		100 ms fixed		$\begin{aligned} & (<0.5 \text { to } \\ & 15) \mathrm{s} \end{aligned}$	（＜0．5 to 15）s	5 s fixed	$\begin{aligned} & (<0.5 \text { to } \\ & 15) \mathrm{s} \end{aligned}$
			In the event of phase sequence or phase loss fault，release time is $\sim 100 \mathrm{~ms}$					
LED Indications	R／山	Healthy	R Continuous ON			¢ Continuous ON		
		Phase reverse	R Flashing			\＃Flashing		
		Asymmetry	N．A．	R OFF	R OFF	N．A．		
	OV		N．A			Over voltage		
	UV		N．A．			Under voltage		
	AS		N．A．			Asymmetry		
	All OFF		Phase fail／Supply voltage＞577． 5 V AC					
	LED＇s flashing		N．A．			円 Pot changed during running conditions		
Output	Relay		1 C／O ， 5 A（Res．）＠ $250 \mathrm{~V} \mathrm{AC} \mathrm{/} 30 \mathrm{~V}$ DC					
	Utilization category	AC－15	Rated voltage（Ue）：120／240 V；Rated current（le）：3．0／1．5 A					
		DC－13	Rated voltage（Ue）：24／125／250 V；Rated current（le）：2．0／0．22／0．1 A					
Mechanical life			3×10^{6} operations					
Electrical life			1×10^{5} operations					
Operating temperature			$-15^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$					
Humidity（Non－condensing）			95\％（Rh）					
Max．operating altitude			2000 m					
Degree of protection			IP20 for terminals，IP30 for housing					
Housing			Flame retardant UL 94－V0					
Mounting			Base／DIN rail（ 35 mm Symmetrical）					
Dimensions in mm（W $\mathrm{W} \times \mathrm{C}$ ）			$18 \times 59 \times 90$					
Weight（unpacked）			$70 \text { gms (approx) }$					
Certifications								

Timing Devices \& Supply Monitors

Supply Monitors

SM 301

Supply Monitoring

- Protects against Phase loss, Phase reversal and Phase - Phase unbalance
- Compact 36 mm wide
- No auxiliary supply needed
- DIN rail and base mountable
- Voltage sensing principle
- Designed to meet industrial and agricultural segment needs

Description	Cat. No.
415 V AC, Single phase preventer, Phase reversal, Phase unbalance with 65 V AC Asymmetry, $1 \mathrm{C} / \mathrm{O}$	MA51BC
415 V AC, Single phase preventer, Phase reversal, Phase unbalance with 65 V AC Asymmetry, $2 \mathrm{C} / \mathrm{O}$	MC21B5
415 VAC, Single phase preventor, Phase reversal, Phase unbalance with 40 VAC Asymmetry, 1 C/O	MA51BK

Connection Diagram

MA51BC, MA51BK (1 CO), MC21B5 (2 CO)

Overall Dimensions

Supply Monitors
SM 301

Cat. No.		MA51BC	MC21B5	MA51BK
Supply voltage (吊)		3-Phase 3-Wire, 415 V AC, $50 / 60 \mathrm{~Hz}$		
Power consumption		15 VA (Max.)		
Trip settings:	Phase - Phase unbalance	$65 \mathrm{VAC} \pm 10$ (fixed)		40 VAC + 10
	Unbalance hysteresis	10-18 V AC		
Time delay	ON delay	2 sec (fixed)		
	OFF delay	7 sec (fixed)		
Relay output		$1 \mathrm{C} / \mathrm{O}$ (SPDT)	$2 \mathrm{C} / \mathrm{O}$	$1 \mathrm{C} / \mathrm{O}$
Contact rating		5 A (Res) @ 250 V AC/28 V DC		
Electrical life		1×10^{5} operations		
Mechanical life		3×10^{6} operations		
LED indication	ON	Healthy		
	OFF	Phase Loss		
	Fast Blink	Assymetry		
	Slow Blink	Phase Sequence fault		
Setting accuracy		+10\% of full scale		
Operating temperature		$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		
Utilization category	AC-15	Rated voltage (Ue): 125 / 240 V , Rated current (le): 3 / 1.5 A		
	DC-13	Rated voltage (Ue): $125 / 240 \mathrm{~V}$, Rated current (le): 0.2 / 0.1 A		
Humidity (Non-condensing limits)		Max. 95\%		
Max. operating altitude		2000 m		
Degree of protection		IP20 for terminals, IP40 for housing		
Housing		Flame retardant UL 94-V0		
Mounting		Base/DIN rail (35 mm Symmetrical)		
Dimensions in mm (WxHxD)		$36 \times 60 \times 90$		
Weight (Unpacked)		120 gms (approx)		
Certifications		C $\in \square$		

Timing Devices \& Supply Monitors

Supply Monitors
 SM 500

Three Phase Four Wire Voltage Monitoring

- Protects against Phase loss, Phase reversal and Phase-Phase unbalance
- Can be configured for 3 phase 4 wire or 1 phase system
- Selectable Over / Under voltage trip level
- Adjustable time delay
- LED indications for power and fault conditions
- Voltage sensing principle

- $1 \mathrm{C} / \mathrm{O}$ or $2 \mathrm{C} / \mathrm{O}$ configuration

Description	Cat. No.
UV + OV ON delay $0-15 \mathrm{~min}, 1 \mathrm{P} / 3 \mathrm{P}, 4 \mathrm{~W}, 1 \mathrm{C} / \mathrm{O}$	MD71B9
UV + OV ON delay $0-15 \mathrm{sec}, 1 \mathrm{P} / 3 \mathrm{P}, 4 \mathrm{~W}, 1 \mathrm{C} / \mathrm{O}$	MD71BH
UV + OV OFF delay $0-15 \mathrm{sec}, 1 \mathrm{P} / 3 \mathrm{P}, 4 \mathrm{~W}, 1 \mathrm{C} / \mathrm{O}$	MD71BF
SPP + UV + OV ON delay $0-15 \mathrm{~min}, 1 \mathrm{P} / 3 \mathrm{P}, 4 \mathrm{~W}, 1 \mathrm{C} / \mathrm{O}$	MG73B9
SPP + UV + OV ON delay $0-15 \mathrm{sec}, 1 \mathrm{P} / 3 \mathrm{P}, 4 \mathrm{~W}, 1 \mathrm{C} / \mathrm{O}$	MG73BH
SPP + UV + OV OFF delay $0-15 \mathrm{sec}, 1 \mathrm{P} / 3 \mathrm{P}, 4 \mathrm{~W}, 1 \mathrm{C} / \mathrm{O}$	MG73BF

Connection Diagram

MD71BH, MD71B9, MG71BF, MG73BH, MG73B9, MG73BF

Overall Dimensions

Supply Monitors

SM 500

Cat. No.:		MD71B9	MD71BH	MD71BF	MG73B9	MG73BH	MG73BF
Function		Phase and Voltage control					
Supply voltage (听)		1-Phase 240 V AC; 3-Phase 4-Wire 240 V AC					
Frequency		$50 / 60 \mathrm{~Hz}$					
Power consumption		5 VA (Max.)					
Trip levels	Under voltage	55\% to 95\% of \$					
	Over voltage	105\% to 125% of ¢					
	Asymmetry	N. A.			10\%		
Setting accuracy		$\pm 5 \%$ of full scale					
		Note: Voltage setting are with respect to neutral					
Time delay setting accuracy $\pm 10 \%$ of full scale	ON Delay	0-15 min	0-15 s	5 s	0-15 min	0-15s	5 s
	OFF Delay	5 s	5 s	0-15s	5 s	5 s	0-15s
LED indications	Green	Power ON					
	OV	Over voltage					
	UV	Under voltage					
	Blink	N. A.			Phase asymmetry		
	ON	N. A.			Phase reverse		
	All LEDs OFF	Phase fail					
Contact arrangement		$1 \text { C/O }$			$2 \mathrm{C} / \mathrm{O}$		
Contact rating		5 A (Res.) @ 250 V AC					
Mechanical life		3×10^{6} Operations					
Electrical life		1×10^{5} Operations					
Operating temperature		$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$					
Humidity (Non-condensing)		95\% (Rh)					
Max. operating altitude		2000 m					
Degree of Protection		IP20 for terminals, IP40 for housing					
Enclosure		Flame retardant UL 94-V0					
Mounting		Base/DIN rail (35 mm Symmetrical)					
Dimensions in mm (W $\mathrm{W} \times \mathrm{H}$)		$36 \times 60 \times 90$					
Weight (Unpacked)		$120 \text { gms (approx) }$					
Certifications		C C					

Timing Devices \& Supply Monitors

Supply Monitors

SM 500

Neutral Loss Protection Relay

- Monitors Own Supply
- Phase loss (failure) detection
- Neutral loss detection
- Phase reverse detection
- Phase asymmetry
- Adjustable Over \& Under voltage trip level
- Fixed Operate Time \& Release Time Delay
- 2 C/O Relay output (5 A, Resistive)
- DIN rail \& base mounting
- LED indication for all failure conditions

- Automatic recovery on fault removal

Description	Cat. No.
SPP + Neutral Loss protection + UV + OV + ON Delay and OFF Delay 5 sec fixed, 3 Ph 4 W, 2 C/O	MAC04D0100

Functional Description:

Output Relay will energize after the operating time if the following conditions are fulfilled:

1. All phases are present and phase voltage are within the over \& under voltage trip levels set on the device.
2. Neutral is present.
3. Phase Sequence is ok.
4. Phase to phase asymmetry is less than value mentioned in technical specification.

Relay will trip after the release time, if any of the above condition fails. In case of balanced load condition, if neutral is open, virtual neutral is formed at the star point, hence the product will not trip \& remain healthy.

Connection Diagram:

Supply Monitors
SM 500

Cat. No.		MAC04D0100			
Function		Phase, Neutral and Voltage Control			
Supply voltage (古)		3-Phase 4-Wire, 415 V AC			
Frequency		47 to 53 HZ			
Power consumption		10 VA (MAX.)			
Trip levels	Under voltage	55% to 95% of supply voltage			
	Over voltage	105% to 125% of supply voltage			
	Asymmetry	$94 \mathrm{~V}+4 \mathrm{~V}$ Ph - Ph.			
	Hysteresis	$7 \mathrm{~V}+2 \mathrm{~V}$			
Setting Accuracy		$\pm 5 \%$ of full scale			
Time delay	ON delay	$5 \mathrm{~s} \pm 1 \mathrm{~s}$ (fixed)			
	Trip time for: Phase failure Phase to phase Imbalance Under Voltage Over Voltage	$5 \mathrm{~s} \pm 1 \mathrm{~s}$ (fixed)			
	Trip time for neutral failure	500 ms to 1 s			
	Product relay will not become on, if the phase sequence is reverse at power on. If the phase sequence is reversed during running condition the product will remain healthy.				
LED indications	Respective fault condition will be indicated by LED immediately \& relay will be tripped after specified trip time only.				
		Green LED	UV	OV	Blink : ASY ON : REV
	Power ON	ON	OFF	OFF	OFF
	Phase reverse	ON	OFF	OFF	ON
	Asymmetry	ON	OFF	OFF	BLINK
	UV	ON	ON	OFF	OFF
	OV	ON	OFF	ON	OFF
	Phase fail	BLINK	OFF	OFF	OFF
	Neutral fail	ON	BLINK	BLINK	BLINK
Relay output	Contact arrangement	$2 \mathrm{C} / \mathrm{O}$			
	Contact rating	5 A (Res.) @ 240 V AC			
Utilization category AC-15		Rated voltage (Ue) : $230 \mathrm{~V} / 125 \mathrm{~V}$; Rated			
Utilization category DC-13		Rated voltage (Ue) : $250 \mathrm{~V} / 120 \mathrm{~V} / 24 \mathrm{~V}$; Rated			
Mechanical life expectancy		1×10^{7} Operation			
Electrical life expectancy		1×105 Operation			
Operating temperature		$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$			
Humidity (non-condensing)		95\% Rh (without condensation)			
Degree of protection		IP20 for Terminals ; IP30 for Housing			
Housing		Flame retardant UL 94-V0			
Mounting		Base/DIN Rail (35 mm symmetrical)			
Dimensions in mm (W $\times \mathrm{H} \times \mathrm{D}$)		$36 \times 90 \times 60$			
Weight (Unpacked)		120 gms (approx)			
Certification		C 6			

Timing Devices \& Supply Monitors

Supply Monitors

SM 501
Three Phase Three Wire UV + OV \& Single Phasing Protection

- Protects against Phase loss, Phase reversal and Phase-Phase unbalance \& q Under / Over voltage faults
- 3 phase 3-wire models
- Adjustable ON delay \& Trip time delay
- LED indications for power ON, UV, OV and phase faults
- DIN rail and base mountable
- Compact 2M size

- Voltage sensing principle

Connection Diagram

MB53BM, MG53BI, MG53BH, MG53BF, MG53BO,
for 220 VAC : MG63BH, MG63BF

Overall Dimensions

Supply Monitors

SM 501

Cat．No．			MG53BH	MG53BF	MG53BI	MG53BO	MB53BM	MG63BH	MG63BF
Supply voltage（\＄）			3 Phase 3 Wire， 415 V AC					3 Phase， 3 Wire， 220 V AC	
Frequency			$50 / 60 \mathrm{~Hz}$						
Power consumption			10 VA（Max．）					5 VA （Max．）	
Trip levels	Under voltage		55\％to 95\％of 中			85\％Fix	Voltage 80\％ of 亗（Fix）	55\％to 95\％of 中	
	Over voltage		105\％to 125% of 古			110\％Fix	N．A．	105\％to 125\％of 安	
	Asymmetry		10\％		94 Volt	10\％	5% to 17%	10\％	
Setting accuracy			$\pm 5 \%$ of full scale						
Time delay	ON delay		（＜0．5－15）s	5 s	5 s	3 min	$(<0.5-15) \mathrm{s}$	（＜0．5－15）s	5 s
	OFF delay		5 s	$(<0.5-15)$ s	5 s	5 s	（＜0．5－15）s	5 s	（＜0．5－15）s
			In the event of phase sequence or phase loss fault off delay is $\sim 100 \mathrm{~ms}$						
	Setting accuracy		$\pm 10 \%$ of full scale						
LED indications	ON	Continuous ON	Power ON						
	UV	Continuous ON	Under voltage						
	OV	Continuous ON	Over voltage				N．A	Over voltage	
	ASY／REV	Blinking	Phase asymmetry				N．A	Phase asymmetry	
		Continuous ON	Phase reverse				N．A	Phase reverse	
	ASY／REV	Continuous ON	N．A．				Phase reverse	N．A	
	All LEDS OFF		Phase fail						
			Supply voltage＞577．5 V					Supply voltage＞302．5 V	
Relay output	Contact arrangement		$2 \mathrm{C} / \mathrm{O}$						
	Contact rating		5 A（Res．）＠ 250 V AC／ 30 V DC						
Utilization category		AC－15	Ue Rated voltage V：120／240 V，le Rated current I：3．0／1．5 A						
		DC－13	Ue Rated voltage V： $24 / 125 / 250 \mathrm{~V}$ ，le Rated current I： $2.0 / 0.22 / 01 \mathrm{~A}$						
Mechanical life			3×10^{6} operations						
Electrical life			1×10^{5} operations						
Operating temperature			$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$						
Humidity（Non－condensing limits）			Max．95\％						
Max．operating altitude			2000 m						
Degree of protection			2						
Pollution degree			IP20 for terminals，IP40 for housing						
Housing			Flame retardant UL 94－V0						
Mounting			Base／DIN rail（35 mm Symmetrical）						
Dimensions in mm（WxHxD）			$36 \times 60 \times 90$						
Weight（Unpacked）			120 gms （approx）						
Certifications			C $\in \square$						

Timing Devices \& Supply Monitors

Supply Monitors

Supply Monitoring Series - Current Control

- Microprocessor relay protects against Overload, Phase loss, Phase reverse and Phase unbalance faults
- Wide range of sensing current: 1A-45A
- Models for 1 Phase and 3 Phase systems
- Auto / Manual reset selection
- Fail-safe protection

- Inverse time model with underload, locked rotor protection and selectable trip class
- Definite time model with underload and selectable start and trip time

	Description
	Inverse time current monitoring relay, 3 Ph, 3-9 A, 1C/O
	Inverse time current monitoring relay, 3 Ph, $8-24 \mathrm{~A}, 1 \mathrm{C} / \mathrm{O}$
	Inverse time current monitoring relay, 3 Ph, 15-45 A, 1C/O
	Definite time current monitoring relay, 3 Ph, 3-9 A, 1C/O
Definite time current monitoring relay, 3 Ph, 8-24 A, 1C/O	17A122CB0
Definite time current monitoring relay, 3 Ph, 15-45 A, 1C/O	17A322CB0
Inverse time current monitoring relay, 1 Ph, 3-9 A, 1C/O	17B122AA0
Inverse time current monitoring relay, 1 Ph, 8-24 A, 1C/O	17B222AA0
Inverse time current monitoring relay, 1 Ph, 15-45 A, 1C/O	17B322AA0
Definite time current monitoring relay, 1 Ph, 3-9 A, 1C/O	17C112EB0
Definite time current monitoring relay, 1 Ph, 8-24 A, 1C/O	17C212EB0
Definite time current monitoring relay, 1 Ph, 15-45 A, 1C/O	17C312EB0
	17D112DA0

Supply Monitoring Series - Current Control

The Current Monitoring Relay (CMR) provides monitoring and protection of loads against overload, underload, Phase loss, Phase asymmetry and Phase sequence faults. The CMR measures current directly through the use of built-in current transformers \& can be set to detect faults for a wide range of current.

The CMR can also be used for higher current ranges by using an external CT. Under Load protection is provided by undercurrent trip to avoid dry running, cavitations, etc. Phase Loss/Imbalance protection prevents negative sequence current thus protecting the rotor winding.

There are two types of current monitoring relays: definite time based and inverse time based. In the case of definite time based relays, the trip time is settable while with inverse time relays, the trip time is inversely proportional to the current depending on the trip class. The relays protect motors from over-load and under-load conditions.

In the case of definite time relays, Under load protection is provided by undercurrent trip. It is suitable for small pumps to avoid dry running, cavitations, etc. Negative sequence current due to phase unbalance or phase loss may damage rotor winding. Relay gives excellent protection for Phase imbalance or phase loss. Relay detects the phase reversal during starting only. For this feature motor start duration should be more than 0.2 seconds. In case of Auto reset mode, relay resets approximately 15 minutes after trip in case of 3 Phase products and 10 minutes after trip in case of 1 - phase products. For all trips relay could be reset immediately. For manual reset press and hold reset switch for 2 seconds.

With inverse time relays, relay implements the thermal image of the motor during heating and cooling periods. If the motor current exceeds 1.1 times set value of the current, relay trips the motor as soon as the value of thermal capacity exceeds threshold value. It protects motor from locked rotor conditions due to mechanical fault or due to high inertia load.

The applications include all motor and pump protection panels with single phase and three phase supply.

Timing Devices \& Supply Monitors

Supply Monitoring Series - Current Control

Product		Three Phase						Single Phase					
		P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12
Auxiliary supply		220 to 415 V AC, -20% to $+15 \%, 50 / 60 \mathrm{~Hz}$						110 to 240 V AC, -20% to $+10 \%, 50 / 60 \mathrm{~Hz}$					
Power consumption (Max.)		10 VA (approx)						5 VA (approx)					
LED Indication	Power ON	ON (Green LED)											
	OL (Over load)	ON (Red LED 1)											
	UL (Under load)	ON (Red LED 2)											
	Phase REV. / UNB	ON: Phase reverse / Blink : Imbalance (Red LED 3)						N. A.					
	Phase loss indication	All LEDs are OFF						N. A.					
Relay contact arrangement \& rating		1 NO (Fail safe operation) 5 A @ 240 V AC											
Utilization category AC-15		Ue Rated voltage V : 120 / 240 V , le Rated current I: 3.0 / 1.5 A I											
Mechanical life		1×10^{7} Operations											
Electrical life		1×10^{5} Operations @ rated load											
Number of CTs		2						1					
Trip characteristics		Inverse time			Definite time			Inverse time			Definite time		
Thermal memory		Yes			NA			Yes			NA		
Trip class (IEC 60947-4-1)		$10 \mathrm{~A}, 10,20,30$			NA			5, 10, 20, 30			NA		
Start time		NA			0.2 to 30 s			NA			0.2 to 30 s		
Delay time		NA			0.2 to 10 s			NA			0.2 to 10 s		
Under load protection		40\% to 90% (Trip time <5 s)			50\% (Trip time: < 5 s)			40\% to 90% (Trip time < 5 s)			50\% (Trip time:$<5 \mathrm{~s})$		
Locked rotor protection		300% of the set Value trip time: < 3 s after starting			N A			300% of the set value trip time: $<3 \mathrm{~s}$ after starting			NA		
Phase imbalance protection		50\% Imbalance (Trip time < 5 s)						NA					
Phase loss protection		70\% Imbalance (Trip time < 3 s)						NA					
Phase reverse protection		Yes, 0.2 s approx						NA					
Reset mode		Auto / Manual											
Test function		Yes											
Setting accuracy		$\pm 5 \%$											

Table continued on page 108

Three Phase Products

	Cat. No.	Trip Char.	Current
PI	17A122CB0	Inverse	3 A to 9 A
P2	17A222CB0	Inverse	8 A to 24 A
P3	17A322CB0	Inverse	15 to 45 A
P4	17B122AA0	Definite	3 A to 9 A
P5	17B222AA0	Definite	8 to 24 A
P6	17B322AA0	Definite	15 A to 45 A

Single Phase Products

	Cat. No.	Trip Char.	Current
P7	17C112EB0	Inverse	3 to 9A
P8	17C212EB0	Inverse	8 A to 24 A
P9	17C312EB0	Inverse	15 A to 45 A
P10	17D112DA0	Definite	3 to 9A
P11	17D212DA0	Definite	8 A to 24 A
P12	17D311DA0	Definite	15 A to 45 A

Timing Devices \& Supply Monitors

Supply Monitors

Connection Diagram

Single Phase

17C122EB0, 17D112DAO, 17C21EB0, 17D212DA0, 17C312EB0, 17D312DA0

Three Phase

MODE Selection:
Two position DIP slide switch has been provided on the front facial of the product. By using these switches following protection / modes can be made On and OFF 1) Auto R eset mode.
2) Locked Rotor Protection (for Inverse Time products)
3) Underload Protection mode (for Definite products)

AUTO Reset mode $=$ OFF (Manual ON) LOCKED Rotor Protection = OFF Under Load Protection = OFF

AUTO
UL

AUTO Reset mode $=$ ON LOCKED Rotor Protection $=\mathrm{ON}$ Under Load Protection = ON

Overall Dimensions

All dimensions are in mm

Supply Monitoring Series - Current Control

Product	Three Phase						Single Phase					
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12
Repeat accuracy	$\pm 2 \%$											
ON delay	$450 \mathrm{~ms} \pm 50 \mathrm{~ms}$											
Reset time	< 300 ms											
Type of insulation	Reinforced insulation											
Dimensions in mm (WxHxD)	$101 \times 34 \times 76.9$											
Mounting	Base mounting											
Weight approx (Unpacked)	210 gms (approx)											
Degree of protection	IP40 for enclosure											
Operating position	Any											
Maximum operating altitude	2000 m											
Operating temperature	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$											
Relative humidity	95\% Rh (without condensation)											
Number of wires	$4 \text { (L1, L2, 15, 18) }$						4 (L1, N, 15, 18)					
Size \& length of wires	$1 \mathrm{~mm}^{2}, 65 \mathrm{~cm}$ Length											
Max. size of wire passing thro. CT	$16 \mathrm{~mm}^{2}$											
Auto reset time	15 min						10 min					
Manual reset	Immediate											
Product certification	c											

Inverse trip characteristic curves:

Timing Devices \& Supply Monitors

Supply Monitors

Frequency Monitoring Relay Series

- Models for Over frequency and Under / Over frequency monitoring
- Monitors frequency of three signals - Sine, Square \& Triangular
- Model for frequency limit control: 5 Hz to 135 Hz
- Wide signal Input voltage: 15 to 500 V AC
- Ease of frequency setting with simple addition \& subtraction
- LED indications for healthy, unhealthy \& no signal conditions

Description	Cat. No.
110-240 V AC, Over frequency monitoring series PD 225 with ON delay of 500 ms (Fixed), \& OFF delay of 500 ms (Fixed), $1 \mathrm{C} / \mathrm{O}$	MI81BJ
220-440 V AC, Over frequency monitoring series PD 225 with ON delay of 500 ms (Fixed), \& OFF delay of 500 ms (Fixed), 1 C/O	MI91BJ
10-240 V AC, Under/Over frequency monitoring series PD 225 with ON delay of 500 ms (Fixed) \& OFF delay of 500 ms to 5 Sec . (Selectable), $1 \mathrm{C} / \mathrm{O}$	MI81BL
220-440 V AC, Under/Over frequency monitoring series PD 225 with ON delay of 500 ms (Fixed) \& OFF delay of 500 ms to 5 Sec . (Selectable), $1 \mathrm{C} / \mathrm{O}$	MI91BL

Connection Diagram

MI81BJ, MI91BJ, MI81BL, MI91BL

Overall Dimensions

Supply Monitors

Frequency Monitoring Relay Series

Timing Devices \& Supply Monitors

Supply Monitors

PTC Thermistor Relay Series

- Monitors and protects motors with integrated PTC resistor sensors
- Protection against over heating for heavy duty load, high switching frequency, high operating temperature \& insufficient cooling conditions
- Reset Options: Manual, Automatic and Remote

PTC Thermistor Relay with Single Phasing Protection

- Thermistor Relay with protection against phase faults such as Phase Sequence, Symmetrical phase loss, Phase unbalance
- Independent trip for Thermistor fault and SPP fault

- LED indications for healthy, unhealthy, Sensor open/short conditions, Phase Faults conditions

Description	Cat. No.
110-240 V AC, Thermistor series PD 225, 1 C/O	MJ81BK
220-440 V AC, Thermistor series PD 225, 1 C/O	MJ91BK
24 V AC/DC, Thermistor series PD 225, 2 C/O	MJA3BK
110-240 V AC, Thermistor series PD 225, 2 C/O	MJ83BK
220-440 V AC, Thermistor series PD 225, $2 \mathrm{C} / \mathrm{O}$	MJ93BK
230 V AC, Thermistor + SPP series, $1 \mathrm{NO}+1 \mathrm{NO}$	ML64BS
230 V AC, Thermistor + SPP series, 1 NO + 1 NC	ML67BS
400 V AC , Thermistor + SPP series, $1 \mathrm{NO}+1 \mathrm{NO}$	MLD4BS
400 V AC, Thermistor + SPP series, 1 NO + 1 NC	MLD7BS

Connection Diagram PTC Thermistor Relay Series

MJ81BK, MJ91BK, MJA3BK, MJ83BK, MJ93BK

Overall Dimension

 PTC Thermistor Relay Series

Timing Devices \& Supply Monitors

Supply Monitors

PTC Thermistor Relay Series

Cat. No.			MJ81BK	MJ91BK	MJA3BK	MLB4BK	MLC4BK
Supply voltage (Un)			$\begin{aligned} & 110 \text { to } 240 \mathrm{~V} \mathrm{AC,} \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 220 \text { to } 440 \mathrm{~V} \mathrm{AC,} \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V} \text { AC/DC, } \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	3 Ph - 3 Wire 230 V AC $(50 / 60 \mathrm{~Hz})$	$\begin{aligned} & 3 \text { Ph - } 3 \text { Wire } \\ & 400 \text { V AC }(50 / 60 \mathrm{~Hz}) \end{aligned}$
Supply tolerance			-20% to $+10 \%$ of Un			+15\% of Un	
Power consumption			8 VA		2 VA	1 VA	2 VA
Contact arrangement			$1 \mathrm{C} / \mathrm{O}$		$2 \mathrm{C} / \mathrm{O}$	$1 \mathrm{NO}+1 \mathrm{NO}$	
Contact rating			6 A @ 250 V AC / 28 V DC			$5 \mathrm{~A}(\mathrm{NO})$ and $3 \mathrm{~A}(\mathrm{NC}) @ 240 \mathrm{~V}$ AC / 28 V DC	
Utilization category	AC-15	Ue rated voltage V le rated current A	$\begin{aligned} & 120 / 240 \\ & 3.0 / 1.5 \end{aligned}$			$\begin{gathered} 120 / 240 \\ 3.0 / 1.5 \end{gathered}$	
	DC-13	Ue rated voltage V le rated current A	$\begin{aligned} & 24 / 125 / 250 \\ & 2.0 / 0.22 / 0.1 \end{aligned}$			$\begin{aligned} & 24 / 125 / 250 \\ & 2.0 / 0.22 / 0.1 \end{aligned}$	
Mechanical life			3×10^{6} operations				
Electrical life			1×10^{5} operations				
Phase unbalance			NA			$70 \mathrm{VAC} \pm 10 \mathrm{~V}$ AC	104 V AC $\pm 10 \mathrm{~V}$ AC
Asymmetrical phase loss (single phase)			NA			$110 \mathrm{VAC} \pm 10 \mathrm{VAC}$	$220 \mathrm{~V} \mathrm{AC} \pm 10 \mathrm{~V} \mathrm{AC}$
Symmetrical phase loss (all phases)			NA			$130 \mathrm{~V} \mathrm{AC} \pm 10 \mathrm{~V} \mathrm{AC}$	$250 \mathrm{~V} \mathrm{AC} \pm 10 \mathrm{~V} \mathrm{AC}$
Restart voltage			NA			145 V AC $\pm 10 \mathrm{~V}$ AC	265 V AC $\pm 10 \mathrm{~V}$ AC
Trip Resist			$1.33 \mathrm{k} \Omega$ to $2.85 \mathrm{k} \Omega$				
Reset level			$<1.47 \mathrm{k} \Omega$				
Sensor short			$20 \Omega \pm 4 \Omega$				
Sensor short hysterisis			$20 \Omega \pm 4 \Omega$				
Sensor open			$20 \mathrm{k} \Omega+5 \%$				
Max. cold resistance of sensor chain			$20 \mathrm{k} \Omega$ to $1.33 \mathrm{k} \Omega$				
Reset mode			Manual reset / Auto reset / Remote reset			Auto	
Manual Reset mode			Manual reset using RESET key			Auto	
Repeat accuracy			1\%				
Response time	Operate time (OT)		80 to 150 ms			120 ms to 380 ms	
	Release time (RT)		$\sim 100 \mathrm{~ms}$			1) 360 to 550 ms for Asymmetrical or Symmetrical Phase Fault 2) 100 ms max for phase sequence \& thermistor trip	
	Reset time		$\sim 150 \mathrm{~ms}$			100 to 550 ms	
LED indications	吊	Continuous ON Continuous OFF Flashing	Power supply healthy			Power supply healthy	
			Power fail			Power fail	
			Sensor open			Sensor open	
	-	Continuous ON Continuous OFF Flashing	Relay ON			Over Thermistor trip	
			Relay OFF			Thermistor relay ON	
			Sensor Short or Cable Short			Sensor short	
	Er-ת	Continuous ON Continuous OFF	N. A			SPP Relay Trip (For supply above restart voltage)	
						SPP relay ON	
						Supply and SPP Faul	elow restart voltage
Terminal capacity			(1 to 4) mm				
Mounting / Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)			Base or / DIN rail / ($22.5 \times 83 \times 100.5)$				
Weight (Unpacked)			~ 120 gms (approx)			~ 120 gms (approx)	
No of sensors			3 PTC in series manufactured as per DIN 44081 or 44082				
Operating temperature			$-15^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$				
Relative humidity			95\% (without condensation)				
Degree of protection			IP40 Enclosure; IP20 Terminals				
Certifications			C 6				

Timing Devices \& Supply Monitors

Supply Monitors

Earth Leakage Relay

- Monitors, detects and protects power systems from leakage faults
- Wide auxiliary supply range: 110-240 V AC, 220-415 V AC
- Wide range of selectable Earth leakage current: $60 \mathrm{~mA}-300 \mathrm{~mA}$, 0.2 A - 1.2 A
- Configurable Earth leakage Trip time: $100 \mathrm{~ms}-5 \mathrm{~s}$
- Easily configurable operating modes
- Test feature to check complete product functionality
- Manual / Remote reset feature
- LED indication for relay status, CT open, Earth leakage fault \& test / reset switch short

F1 series
(22.5 mm)

F2 series

Description (ELR)	Cat. No	Description (CBCT)	Cat. No
110-240 V AC, 110 V DC, 30 mA - 30 A , Manual reset	17G715GF2	CBCT (moulded case), $38 \mathrm{~mm}, 30 \mathrm{~mA}-30 \mathrm{~A}$	17H7NNHN3
110-240 V AC, 110V DC, $30 \mathrm{~mA}-30 \mathrm{~A}$, Auto reset	17G715KF2	CBCT (moulded case), $57 \mathrm{~mm}, 30 \mathrm{~mA}-30 \mathrm{~A}$	17H7NNIN3
220-415 V AC, 220V DC, $30 \mathrm{~mA}-30 \mathrm{~A}$, Manual reset	17G745GF2	CBCT (moulded case), $92 \mathrm{~mm}, 30 \mathrm{~mA}-30 \mathrm{~A}$	17H7NNJN3
220-415 V AC, 220V DC, $30 \mathrm{~mA}-30 \mathrm{~A}$, Auto reset	17G745KF2	CBCT (tape wound), $215 \mathrm{~mm}, 30 \mathrm{~mA}$ - 30A	17H7NNKN3
110-240 V AC, $60 \mathrm{~mA}-300 \mathrm{~mA}, 1 \mathrm{C} / \mathrm{O}$	17G514FF1	CBCT (tape wound), $35 \mathrm{~mm}, 60 \mathrm{~mA}-300 \mathrm{~mA}$	17H5NNHL3
220-415 V AC, $60 \mathrm{~mA}-300 \mathrm{~mA}, 1 \mathrm{C} / \mathrm{O}$	17G544FF1	CBCT (tape wound), $65 \mathrm{~mm}, 60 \mathrm{~mA}-300 \mathrm{~mA}$	17H5NNIL3
		CBCT (tape wound), $100 \mathrm{~mm}, 60 \mathrm{~mA}-300 \mathrm{~mA}$	17H5NNJL3
110-240 V AC, 0.2 A - 1.2 A, 1 C/O	17G614FF1	CBCT (tape wound), $35 \mathrm{~mm}, 0.2 \mathrm{~A}-1.2 \mathrm{~A}$	17H6NNHL3
220-415 V AC, 0.2 A - 1.2 A, 1 C/O	17G644FF1	CBCT (tape wound), $65 \mathrm{~mm}, 0.2 \mathrm{~A}-1.2 \mathrm{~A}$	17H6NNIL3
		CBCT (tape wound), $100 \mathrm{~mm}, 0.2 \mathrm{~A}-1.2 \mathrm{~A}$	17H6NNJL3

Connection Diagram (F1 series)

Timing Devices \& Supply Monitors

Supply Monitors

Earth Leakage Relay

Cat. No.			17G514FF1	17G614FF1	17G544FF1	17G644FF1
Supply voltage (古)			110 V to $240 \mathrm{~V},-20 \%$ to $+10 \%, 50 / 60 \mathrm{~Hz}$		220 V to $415 \mathrm{~V},-20 \%$ to $+10 \%, 50 / 60 \mathrm{~Hz}$	
Power consumption sensitivity			5 VA		10 VA	
LED indication	Power ON		ON (Green LED)			
	CT Open/SW Short (CT/SW)		ON:CT open, Blink: TST / RST switch short (Red LED2)			
	Earth leakage (EL)		ON (Red LED1)			
Relay			1 C/O, 5 A @ 240 V AC / 30 V DC			
Utilization category		AC-15	Ue Rated voltage: 120 / 240 V , le Rated current: 3.0 / 1.5 A			
		DC-13	Ue Rated voltage: 125 / 250 V, le Rated current: 0.22 / 0.1 A			
Mechanical life			1×10^{7} operations			
Electrical life			1×10^{5} operations			
Modes available through potentiometer			Fail safe non-latch, Fail safe latch, Non-fail safe non-latch			
Trip time or release time including relay Changeover (Adjustable parameter)			100 ms to 5 s . Gradation or dial setting: $100 \mathrm{~ms}, 200 \mathrm{~ms}, 400 \mathrm{~ms}, 2 \mathrm{~s}, 5$			
Sensitivity			60 mA to 300 mA	0.2 A to 1.2 A	60 mA to 300 mA	0.2 A to 1.2 A
Trip time, When In *5			< 100 ms Irrespective of trip delay set			
Reset enable			Below 85% on current sensitivity level and in presence of CBCT			
Test / Reset facility			Yes (on Front dial \& Remote) Reset only for FSL mode			
Setting accuracy			- 10% (85 ms to 100 ms trip time for 100 ms setting in NFSL)			
Repeat accuracy			$\pm 1 \%$			
ON delay			$50 \mathrm{~ms} \pm 20 \mathrm{~ms}$			
Reset time			< 100 ms			
Type of insulation			Reinforced			
Operating temperature			$-15^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$			
Relative humidity			95\% Rh (without condensation)			
Operating position			Any			
Maximum operating altitude			2000 m			
Mounting			Base/DIN rail			
Dimensions in mm (WxHxD)			$22.5 \times 83 \times 100.5$			
Degree of protection			IP40 for Enclosure, IP20 for Terminals			
Weight			$120 \text { gms (approx) }$			
Certifications			$\left(\in \Theta_{\text {Cusu }}\right.$			

Timing Devices \& Supply Monitors

Supply Monitors

Earth Leakage Relay

Earth Leakage Protection:

Earth Leakage relay is a micro controller based device meant to measure leakage current and isolate the faulty circuit from the system. Leakage current is sensed through core balance current transformer. Trip occurs when Earth Leakage Current exceeds the Set value of trip current, for the trip time which is adjustable by means of a front mounted potentiometer. The Red LED "EL" indicates the presence of Earth Leakage.

CT Connection:

All conductors to be protected shall pass through the core balance current transformer. Current transformer secondary terminals should be connected to the product terminals by a shielded twisted two core wires. The shield to be connected to Y2 terminal. The CT wires should be placed adequately away from high current carrying conductors or source of strong magnetic field to avoid noise pickup. The Earth Leakage Relay also verifies CT connection. If CT winding is open, red LED "EL" blinks.

Earth Leakage Relay - Series CMR

Test / Reset: Press \& hold Tact switch for 1s. Product will change its state from Healthy to Trip (Test) and vice versa (Reset).

Remote Test / Reset: For Remote Test Reset, connect an external push button switch between Y1and Y2. For test sequence, press and hold the external push button switch for 1 s .

Auto / Reset: Incase of 17G715GF2 \& 17G715KF2, product will reset after 15 min only for 4 attempts. Reset count is cleared after 1 hour of healthy condition or supply interruption or press of test/reset switch.

Connection Diagram (F2 series)

Non Fail Safe Mode with UV Trip Coil

Non Fail Safe Mode with Contactor

Failsafe Mode with Uv Trip Coil

Functional Diagram

In F2 series $1 \mathrm{C} / \mathrm{O}$ is with fail safe protection and 1 NO is with non fail safe protection

Overall Dimensions (F2 series)

Timing Devices \& Supply Monitors

Supply Monitors
Earth Leakage Relay

Cat. No.			17G715GF2	17G715KF2	17G745GF2	17G745KF2
Supply voltage (ゅ)			110-240 V AC, 50/60 Hz		220-415 V AC, 50/60 Hz	
Supply variation			-20% to $+20 \%$			
Power consumption sensitivity			5 VA		10 VA	
LED Indication	Power ON		ON (Green LED)			
	EL / CT		ON (Red LED) Relay trip / Blinking (CT open)			
	Leakage current / TS		By Bar graph 30\% (Green), 45\% (Green), 60\% (Yellow), and 75\% (Red), Blink Test / Reset switch is pressed			
Overall leakage current I Δn			$30 \mathrm{~mA}-30 \mathrm{~A}$ (in 10 steps)			
Contact rating			1 C/O + 1 NO; 5 A (Resistive) @ 240 V AC / 30 V DC			
Contact arrangement			1 NO SPST and 1C/O SPDT			
Utilization category		AC-15	Ue Rated voltage: 120 / 240 V, le Rated current: 3.0 / 1.5 A			
		DC-13	Ue Rated voltage: 125 / 250 V, le Rated current: 0.22 / 0.10 A			
Mechanical life			1×10^{7} operations			
Electrical life			1×10^{5} operations			
Contact material			Ag Alloy			
Reset			Manual reset	Auto reset	Manual reset	Auto reset
No. of auto resets			-	4	-	4
Clear auto reset			After 1 hour of healthy condition or supply interruption			
Test / Reset			Local and Remote (Non potential free contacts) (Upto 10 m)			
Δ Settings (s)			0.040-0.06-0.15-0.25-0.5-0.8-1-2.5-5-10			
Reset enable			Below 50% on current threshold set by potentiometer and in presence of CBCT			
Reset time			<1 s			
Threshold ($\mathrm{I} \Delta \mathrm{n}$)			0.03-0.1-0.3-0.5-1-3-5-10-20-30			
Type class			'A' True RMS measurement (as per IEC 60947-2 Annex M)			
Max. crest factor			5 (for 30 mA to 30 A)			
Setting accuracy			-20\% (Including CBCT accuracy)			
Repeat accuracy			$\pm 2 \%$			
Operating temperature			$-15^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$			
Relative humidity			95\% Rh (without condensation)			
Max. operating altitude			2000 m			
Degree of protection			IP20 for Terminals, IP40 for Enclosure			
Operating position			Any			
Mounting			Base/DIN rail			
Dimensions in mm ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)			$36 \times 90 \times 65$			
CBCT Burden			Should support 50, 2 W , to give 1 V output at 30 A			
Dimensions (with Enclosure in mm W x H x D) ID		CBCT1	$37 \times 91 \times 71$,	17H7NNHN3)	Turns Ratio-1 500:1 Linearity: $\pm 2 \%$ over the range of 30 mA to 30 A Characteristics: Type A as per IEC 60947-2.	
		CBCT2	$37 \times 117 \times 97$,	(17H7NNIN3)		
		CBCT3	$37 \times 155 \times 132$	(17H7NNJN3)		
		CBCT4	$17 \times 215 \times 24$			
Weight (Unpacked)			150 gms (approx)			
Certifications			c E			

If the trip time is set at ' 0 ' sec, then for $5 \mathrm{I} \Delta \mathrm{n} \& 10 \mathrm{I} \Delta \mathrm{n}$, the tripping time will be $</-40 \mathrm{~ms}$ for all current ranges.

Timing Devices \& Supply Monitors

Supply Monitors

CBCT Overall Dimensions

CBCT	Internal Diameter in mm	WEIGHT (in gms)	A	B	C	D	E
17H7NNHN3	38	110	20	71	91	27	48
17H7NNIN3	57	185	20	97	117	27	55
17H7NNJN3	92	250	20	132	155	27	73
17H7NNKN3	215	260	-	-	-	-	-

Timing Devices \& Supply Monitors

Supply Monitors

Earth leakage occurs due to reasons like normal wear and tear of equipment or moisture around terminals which can result in partial breakdown of insulation between supply and earth. Earth leakage currents are dangerous as it can lead to cable heat generation and insulation failure. This can result in a major catastrophe thus leading to significant loss of property and human lives.

Difference between earth fault and earth leakage

According to IEC 60947-2, Annex B, Earth fault current is the current flowing to earth due to insulation fault and Earth leakage current is the current flowing from the live parts of the installation to earth in the absence of an insulation fault.

Conventional SCPD are not designed to detect earth leakage currents. Earth Leakage Circuit breaker (ELCB or RCCB) has integral current breaking device. It detects as well as protects the system by opening the protected circuit when the residual current exceeds the set value. ELR is a relay that sends a signal to the circuit breaker or contactor whenever the leakage current exceeds the set level.

Effect of earth leakage on human body

Earth Leakage current beyond 30 mA can be lethal leading to death. 30 mA sensitivity is required for protection in domestic installations where the person may come in direct contact with electric equipment in locations for eg labs, schools, workshops, etc. 100 mA and 300 mA protection is required where there is indirect contact or due to insulation failure in the cables.

ELR with CBCT:

Core Balanced Current Transformer (CBCT) uses the technology of residual magnetic flux. All conductors to be protected shall pass through the core balance current transformer. The vector sum of all the currents should be equal to zero.
$\bar{I}_{r}+\bar{I}_{y}+\bar{I}_{b}=0 \quad$ for 3 phase 3 wire system.
$\bar{I}_{\mathrm{r}}+\bar{I}_{\mathrm{y}}+\bar{I}_{\mathrm{b}}+\bar{I}_{\mathrm{n}}=0 \quad$ for 3 phase 4 wire system
The CT wires should be placed adequately away from high current carrying conductors or source of strong magnetic field to avoid noise pickup.

L\&T's ELR with Type class 'A' true RMS measurement (as per IEC 60947-2 Annexure M) provides the user with benefits that go the extra mile.

Earth Leakage relay is a micro controller based device meant to measure low level of leakage current and isolate the faulty circuit from the system. Leakage current is sensed through core balanced current transformer. Definite Time Trip occurs when Earth Leakage Current exceeds the trip time which is adjustable by means of a front mounted potentiometer.

The user can set the threshold level ranging from 30 mA to 30 A . In case of earth leakage then the LED indicators will glow depending upon the percentage of set threshold value. For eg: If the set level is 30 mA and the leakage current is around 23 mA then 75% LED indicator will glow which will provide a visual alert to the user. This empowers the user to take corrective actions before any accident.

Typical usage areas for ELR

Steel Plants, Generators and Transformers, Cement plants, Oil Refineries, Buildings, Mobile Operating equipment, Control Panels, Switchboards

Digital Hour Meter／Digital Counter

Hour Meter Series HM 36
－Robust design
－Frequency independent for AC applications
－High degree of accuracy
－Wide supply voltage working models $4-30 \mathrm{~V}$ AC／DC， 10－80 V DC and 90－264 V AC
－Wide temperature range from -40 to $85^{\circ} \mathrm{C}$
－Totally sealed from dust and moisture

Digital Counter

－Wide supply voltage
－Large 6 digit display，easy to read
－Exceptional reliability due to non volatile memory （EEPROM）which can retain the data for 100 years

Available in 3 different shaped Bezels
－Low power consumption
－Electrical reset and enable

Description		Cat．No．	
Digital Hour Meter／Digital Counter（Resettable）			ZロロFBロ
$Z \square \square \quad \mathrm{FB} \square$			
Voltage		Bezel	
H 10－80 V DC	1 Hour Meter	A Round	
$785-265 \mathrm{VAC}$	2 Counter	B 24×48	
J 12－48 V AC／DC		C Screw Mount	

Connection Diagram

Terminal Description

Pin 1：Supply（ $/+$ ）
Pin 2：Supply（～／－）
Pin 3：Enable
Pin 4：Reset

HM 36 Series

For：DC Series

For：AC Series

Three phase， 4 wire，120／240 V system： Connect any one power wire to one terminal and neutral wire to opposite terminal．
Caution
Tighten terminals with flat head screwdriver with tip size $4.3 \times 0.6 \mathrm{~mm}$ ．

Digital Hour Meter / Digital Counter
HM36

Description	Cat. No.
$90-240 \mathrm{~V} \mathrm{AC} Rectangular bezel$,	LA21F1
$90-240 \mathrm{~V} \mathrm{AC} Rectangular 2 holes bezel$,	LA22F2
$90-240 \mathrm{~V} \mathrm{AC} Round bezel$,	LA23F1
$90-240 \mathrm{~V} \mathrm{AC} Round 3 holes bezel$,	LA24F1
$90-240 \mathrm{~V} \mathrm{AC} Square mount bezel$,	LA25F1
$90-240 \mathrm{~V} \mathrm{AC} Cup mount bezel$,	LA26F1
$90-240 \mathrm{~V} \mathrm{AC} Stirrup mount bezel$,	LA27F1
$10-80 \mathrm{~V}$ DC, Rectangular bezel	LD11F1
$10-80 \mathrm{~V} \mathrm{DC} Rectangular 2 holes bezel$,	LD12F1
$10-80 \mathrm{~V} \mathrm{DC} Round bezel$,	LD13F1
$10-80 \mathrm{~V} \mathrm{DC} Round 3 holes bezel$,	LD14F1
$10-80 \mathrm{~V} \mathrm{DC} Cup mount bezel$,	LD15F1
$10-80 \mathrm{~V} \mathrm{DC} Stirrup mount bezel$,	LD16F1
$10-80 \mathrm{~V} \mathrm{DC} Square mount bezel$,	LD17F1
$4-30 \mathrm{~V} \mathrm{AC/DC} Rectangular bezel$,	LC11F1
$4-30 \mathrm{~V} \mathrm{AC/DC} Rectangular 2 holes bezel$,	LC12F1
$4-30 \mathrm{~V} \mathrm{AC/DC} Round bezel$,	LC13F1
$4-30 \mathrm{~V} \mathrm{AC/DC} Round 3 holes bezel$,	LC14F1
$4-30 \mathrm{~V} \mathrm{AC/DC} Cup mount bezel$,	LC15F1
$4-30 \mathrm{~V} \mathrm{AC/DC} Stirrup mount bezel$,	LC16F1
$4-30 \mathrm{~V} \mathrm{AC/DC} Square mount bezel$,	

Views of Different Bezels

Rectangular Bezel

Rectangular 2 holes Bezel

Round Bezel

Round 3 holes Bezel

Cup Mount Bezel

Stirrup Mount Bezel

Timing Devices \& Supply Monitors

Digital Hour Meter / Digital Counter Counter

24×48 bezel

Recommended Panel Cutout: $45.5(+0.5) \mathrm{mm} \times 23.0(+0.5) \mathrm{mm}$

Screw Mount Bezel

Recommended Panel Cutout: $37.0(+0.5) \mathrm{mm} \times 24.6(+0.5) \mathrm{mm}$

HM 36
View of Different Bezels :

Panel Cutout

Diagram A

Diagram B

Diagram C

Max. Panel Thickness : 0.029 (0.76) to 0.401 (10.20)
Panel cutout Dimensions - Tolerance: ± 0.010 (0.30)
All dimensions are in Inches, values in parenthesis are in mm

Digital Hour Meter / Digital Counter Digital Hour Meter

Cat. No.	Z72FBX	ZJ2FBX	ZH2FBX
Supply voltage	$\begin{aligned} & 85-265 \mathrm{~V} \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 10-55 VAC/DC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	10-80 V DC
Rating	0.8 VA	0.4 watt	0.6 watt
Range	999999 Counts		
Resolution	1 Count		
Accuracy	± 1 Count		
Counting frequency	10 Hz		30 Hz
Mounting	Flush / Panel mounting		
Temperature limits	Operating: $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		
Degree of protection	IP54 (for front side only)		
Terminals	1,2 : Input supply, 3 : Enable, 4 : Reset		
Weight	with Round bezel -35 g (approx)		
	with 24×48 bezel - 29 g (approx)		
	with Screw mount bezel - 31 g (approx)		

Hour Meter Series HM 36

Cat. No.	LA25F1	LD15F1	LC36F1
Supply voltage	$90-264 \mathrm{~V} \mathrm{AC}$	$10-80 \mathrm{~V} \mathrm{AC}$	$4-30 \mathrm{~V} \mathrm{AC/DC}$
Frequency	$50 / 60 \mathrm{~Hz}$	NA	$50 / 60 \mathrm{~Hz}$ Over voltage and reverse polarity protection Power consumption
NA	0.5 VA	Protected for 2 times battery voltage and / or Reverse polarity	Not applicable to AC and 48 V for DC application
Bezel	Square mount	0.25 VA	Cup mount
Read out	99999.9	Stirrup mount	
Least count	$1 / 10 \mathrm{~h}$		
Accuracy	$\pm 0.02 \%$ over entire range		
Weight	$55 \mathrm{~g} \mathrm{(approx)}$		
Termination	$1 / 4 "(6.3)$ Spade terminal		
Degree of protection	IP66		

Timing Devices \& Supply Monitors

Front Facia

Timer: Micon 225
ON Delay Multi Function Asymmetric ON-OFF Signal based Multi Function

2AODT5,

2A5DT5, 2B5DT5, 2A6DT6, 2B6DT6

2AADT5,

True OFF Delay
Star Delta

2ASDTO, 2BSDTO

23GDT0

23UDTO,
27UDT0
A Main Time Range Knob (T)
Tow ON Time Range Knob (T1)
OFF Time Multiplication Factor Knob (t2) of T2

2ANDT0
 OFF Time Range Knob (T2)
(TD Delay Time Setting Knob

22LDT0,
(T. Pause Time Knob

The timing duration of timer is adjusted through ' T ' and ' t ' knobs.

```
*)
```


Front Facia

Timer: Micon 175

ON Delay	Multi - Function	Asymmetric ON-OFF	Star Delta	Brownout Timer

12ODT4, 110DT4, 15ODT4

1CJDTO

12SDT0

A Main Time Range Knob
Ton
ON Time Range Knob (T1)

B Multiplication Factor Knob (t) of T
\square OFF Time Range Knob (T2)

Supply Monitoring: SM 175

Timing Devices \& Supply Monitors

Front Facia

Supply Monitoring: SM 500

Phase \& Voltage Control
Neutral Loss Protection

Supply Monitoring: SM 501

Phase \& Voltage Control

MG53BI

MG53BH

MG53BF, MG53BO

MB53BM

A Under Voltage Knob (UV)
B Operate Time Knob (OV)
C ON Delay Time Knob
D OFF Delay Time Knob

Timing Devices \& Supply Monitors

Front Facia

Supply Monitoring: SM 301

Single Phasing Preventor

MA51BC

MC21B5

Supply Monitoring: Earth Leakage Relay

Earth Leakage Relay
ELR (22.5 mm series)

17G514FF1, 17G614FF1,

17G544FF1, 17G644FF1

ELR (35 mm series)

17G715GF2, 17G715KF2 17G745GF2, 17G745KF2
A Mode Selection Knob
D Test Reset Switch
B Earth Leakage Current Selection Knob
C Trip Time Selection Knob
(E) Test Point
(F) External Remote Reset

Timing Devices \& Supply Monitors

Front Facia

Supply Monitoring: Current Monitoring Relay

Single Phase
Three Phase

15 to 45 A range available in steps of 15, 21, 27, 33, 39 and 45 A

B \% of Underload Selection Knob
C Nominal Current Knob (A)
D Start Time Knob (S)
(E) Trip Time Knob (S)
(F) Class Selection Switch

C Test Switch
(H) Reset Switch

Supply Monitoring: PTC Thermistor Relay Series

MJ81BK, MJ91BK

MJA3BK,

MJ93BK, MJ83BK

ML64BS, MLD4BS

ML67BS, MLD7BS

Timing Devices \& Supply Monitors

Front Facia

Supply Monitoring: Frequency Monitoring Relay

Over Frequency Monitoring Relay
Under/Over Frequency Monitoring Relay

MI81BJ, MI91BJ

MI81BL, MI91BL

A Over Frequency Knob (OF) B Under Frequency Knob (UF)
D Enable to Trip (ET), Disable to Trip (DT)

). If鿷要

Modular Remote
Control Units

Remote control units play a crucial role on factory shop floor for operational safety and reliability. Reliable push buttons and indicators from our partners ESBEE, have been trusted by users across industries over the past 3 decades.

ESBEE's product range includes:

New Gen Next Range of Products

- Gen Next Actuators \& Contact Blocks
- Gen Next Push Button Station
- Gen Next LED Indicators
$>16 \varnothing \mathrm{~mm} \& 22.5 \varnothing \mathrm{~mm}$
- Gen Next entegral Actuators
- Panel mounted buzzer

Standard Range of Products

- Standard Actuators \& Contact Blocks
- Standard Push Button Stations
- Accessories

The new ranges of Gen Next series products are compact in size and aesthetically appealing.
16 mm Gen Next LED Indicators have sleek and integral design with special fire retardant plastic. They provide uniform and bright illumination with operating life of more than 0.1 million burning hours.

Patented entegral actuator is a ready to use solution for OEM and Panel builders that provides IP67 protection with shroud. It has isolated terminals for $\mathrm{NO}+\mathrm{NC}$ applications.

Illuminated actuators with LED have snap fit for ease in assembly with low power consumption of 0.6 W max.
Push button stations provide round ergonomic enclosure with good aesthetics that occupies less space. They are robust, easy to grip, assemble and operate. It is available in standard configuration of actuators and LED indicators.

Gen Next Series

Gen Next LED Indicator

－Surface Mounted Device LED technology • Low Power consumption＜0．6W
－Surge \＆Low Voltage Glow Protection（LVGP）

	Description	Cat．No．	Colour （ $4^{\text {th }}$ Digit）	Voltage $\left(5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }} \& 8^{\text {th }} \text { Digit }\right)$
	Gen Next LED Indicator 22.5 mm	EILロロロロロ	R－Red G－Green Y－Yellow A－Amber B－Blue W－White	$\begin{aligned} & \text { 012C - } 12 \mathrm{~V} \mathrm{AC/DC} \\ & \text { 024C - } 24 \mathrm{~V} \mathrm{AC/DC} \\ & 048 \mathrm{C}-48 \mathrm{~V} \mathrm{AC/DC} \\ & 064 \mathrm{C}-64 \mathrm{~V} \mathrm{AC/DC} \\ & 110 \mathrm{~A}-110 \mathrm{~V} \mathrm{AC} \\ & 110 \mathrm{D}-110 \mathrm{~V} \text { DC } \\ & 240 \mathrm{~A}-240 \mathrm{~V} \mathrm{AC} \\ & 220 \mathrm{D}-220 \mathrm{~V} \mathrm{DC} \end{aligned}$
				415A－415 V AC
	Gen Next LED Indicator 16 mm	SIL $\square \square \square \square \square$	R－Red G－Green Y－Yellow A－Amber B－Blue W－White	012C－ 12 V AC／DC 024C－24 V AC／DC 048C－ 48 V AC／DC 064C－ 64 V AC／DC 110C－ 110 V AC／DC 240A－240 V AC

Gen Next Push Button \＆Selector Actuators Ø 22.5 mm
－Snap Mounting with compact contact blocks（EC1C \＆EC2C）
－Max 3 row x 3 column stackable contact blocks

	Description	Cat．No．	Colour （ $4^{\text {th }}$ Digit）
	Flush Head	EMNDFD1	R－Red G－Green C－Black Y－Yellow W－White B－Blue A－Amber F－Gray
	Projecting Head Push Function＇	EMN \square PD1	R－Red G－Green C－Black Y－Yellow W－White B－Blue A－Amber F－Gray
	Mushroom Head ＇Push－Turn Function＇	EMN \square MH1	R－Red G－Green C－Black Y－Yellow

Gen Next Push Button \& Selector Actuators Ø 22.5 mm

Note : 1. Actuators \& Selector Actuators with black ABS collar are offered as Standard
2. Actuators (except Mushroom Head Push - Pull Actuators) are also available with chrome plated ABS \& Brass collar - For Chrome plated ABS Collar replace 7 th digit 1 by 3 eg. : EMNPD 3 - For Brass Collar replace 7th digit 1 by 2 eg. : EMNPD 2
3. For Non-Illuminated Actuator / Selector Actuator at least 1 NO or NC Block required to make a complete Assembly eg. EMNRFD1 + EC1C makes complete assembly of flush head actuator with 1 NO Block

Note * - In 2 position selector actuator, for operating style íreplace 6th digit from K to R and for operating style

Gen Next Illuminated Push Button Actuators

－Snap Mounting with compact contact blocks（EC1C \＆EC2C）

	Description	Cat．No．	Colour （ $8^{\text {th }}$ Digit）	$\begin{aligned} & \text { Voltage } \\ & \left(9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}\right. \\ & \left.\& 12^{\text {th }} \text { Digit }\right) \end{aligned}$
	Flush Head	EG03FDLロロロロロ	R－Red G－Green Y－Yellow A－Amber B－Blue W－White	012C－12 V AC／DC 024C－24 V AC／DC 030C－ 30 V AC／DC 048C－ 48 V AC／DC 064C－ 64 V AC／DC 110A－ 110 V AC 110D－110 V DC 240A－240 V AC 220D－220 V DC
	Projecting Head （Push Function）	EG03PDLロロロロロ	R－Red G－Green Y－Yellow A－Amber B－Blue W－White	012C－ 12 V AC／DC 024C－24 V AC／DC 030C－ 30 V AC／DC 048C－ 48 V AC／DC 064C－ 64 V AC／DC 110A－ 110 V AC 110D－110 V DC 240A－240 V AC 220D－220 V DC
	Selector Actuator with LED holder		R－Red G－Green Y－Yellow A－Amber B－Blue W－White	012C－12 V AC／DC 024C－24 V AC／DC 030C－ 30 V AC／DC 048C－48 V AC／DC 064C－64 V AC／DC 110A－110 V AC 110D－ 110 V DC 240A－240 V AC 220D－220 V DC

Note＊：1）In 2 position selector actuator，for operating style replace 6 th digit from K to R and for operating style \quad replace 6 th digit from K to T ． 2）Assembly comes with LED holder．Please order contact block EC1C and EC2C separately．

Gen Next Modular Contact Blocks

	Description	Cat．No．	Colour （ $8^{\text {th }}$ Digit）	Voltage（ $\mathbf{9}^{\text {th }}, 10^{\text {th }}$ ， $11^{\text {th }} \& 12^{\text {th }}$ Digit）
	＇NO＇Block	EC1C	－	－
	＇NC＇Block	EC2C	－	－
	LED Holder for Gen Next series	EG08HOLDロロロ	R－Red G－Green Y－Yellow A－Amber B－Blue W－White	012C－ 12 V AC／DC 024C－ 24 V AC／DC 048C－ 48 V AC／DC 064C－ 64 V AC／DC 110A－ 110 V AC 110D－ 110 V DC 240A－ 240 V AC 220D－220VDC

[^2]
Modular Remote Control Units

Gen Next entegral Actuator

- With inbuilt contact arrangement
- Contact rating 6 A @ 240 AC

	Description	Cat. No.	Contact Configuration ($3^{\text {rd }}$ Digit)	Colour (4 $4^{\text {th }}$ Digit)
	Flush Head	EEDCFD1	$\begin{aligned} & 1-1 \mathrm{NO} \\ & 2-1 \mathrm{NC} \\ & \text { 3-1 NO + } 1 \mathrm{NC} \\ & \text { 4-2 NO } \\ & 5-2 \mathrm{NC} \end{aligned}$	R-Red G-Green Y-Yellow W-White B-Blue A-Amber C-Black
	Projecting Head Push Function	EEDロPD1	$\begin{aligned} & \text { 1-1 NO } \\ & \text { 2-1 NC } \\ & \text { 3-1 NO + } 1 \text { NC } \\ & \text { 4-2 NO } \\ & 5-2 N C \end{aligned}$	R-Red G-Green Y-Yellow W-White B-Blue A-Amber C-Black
	Mushroom Head Push - Turn	EEDDMH1	$\begin{aligned} & \text { 1-1 NO } \\ & 2-1 N C \\ & \hline 3-1 \text { NO + } 1 \mathrm{NC} \\ & 4-2 N O \\ & 5-2 N C \end{aligned}$	R-Red G-Green Y-Yellow C-Black
	Mushroom Head Push - Function	EEDCMD1	$\begin{aligned} & \text { 1-1 NO } \\ & \text { 2-1 NC } \\ & \text { 3-1 NO + } 1 \text { NC } \\ & \text { 4-2 NO } \\ & \text { - } 2 \text { NC } \end{aligned}$	R-Red G-Green Y-Yellow C-Black
	Symmetric Head Actuator		$\begin{aligned} & \text { 1-1 NO } \\ & 2-1 \text { NC } \\ & \hline \text { 3-1 NO + } 1 \text { NC (Left NO) } \\ & \text { 4-2 NO } \\ & 5-2 \text { NC } \\ & 6-1 \text { NO + } 1 \text { NC (Right NO) } \end{aligned}$ $\begin{aligned} & \text { 3-1 NO + } 1 \text { NC (Left NO) } \\ & \text { 4-2 NO } \\ & \text { 5-2 NC } \\ & \text { 6-1 NO + } 1 \text { NC (Right NO) } \end{aligned}$	R-Red G-Green W-White C-Black
	Lever Head		$\begin{aligned} & 1-1 \text { NO } \\ & 2-1 \text { NC } \\ & 3-1 \text { NO + } 1 \text { NC (Left NO) } \\ & 4-2 \text { NO } \\ & 5-2 \text { NC } \\ & 6-1 ~ N O ~+~ \\ & \text { NC (Right NO) } \end{aligned}$ $\begin{aligned} & 3-1 \text { NO + } 1 \text { NC (Left NO) } \\ & 4-2 N O \\ & 5-2 N C \\ & 6-1 \text { NO + } 1 \text { NC (Right NO) } \end{aligned}$	R-Red G-Green W-White C-Black

Gen Next entegral Actuator

	Description	Cat．No．	Contact Configuration （3rd Digit）	Colour （4 $4^{\text {th }}$ Digit）
	Lock \＆Key Rotary Type	2 Position	1－1 NO	C－Black
		Non Spring Return	2－1 NC	
		EEDCKK1	3－1 NO＋ 1 NC（Left NO）	
		\downarrow ¢ $\begin{gathered}\text { Spring Return } \\ \text { EEDロKI1 }\end{gathered}$	$\begin{aligned} & \text { 4-2 NO } \\ & 5-2 \text { NC } \\ & 6-1 \text { NO }+1 \text { NC (Right NO) } \end{aligned}$	
		3 Position		
		Non Spring Return EEDDKL1		
		$\Downarrow \downarrow \begin{gathered}\text { Spring Return } \\ \text { EEDロKJ1 }\end{gathered}$	$\begin{aligned} & 3-1 \text { NO + } 1 \mathrm{NC} \text { (Left NO) } \\ & 4-2 \mathrm{NO} \\ & 5-2 \mathrm{NC} \end{aligned}$	
		$\Downarrow \downarrow>\begin{gathered}\text { Spring Return L．H．} \\ \text { EEロロKM1 }\end{gathered}$		
		Spring Return R．H． EEDDKN1		

Note＊－In 2 position selector actuator，for operating style ${ }^{\circ}$ replace 6 th digit from K to R and for operating style replace 6th digit from K to T

Panel Mounted Buzzer Ø 22.5 mm

－IP20 protection •80dB at 1 meter

Gen Next Push Button Stations
Dimension •Single Station ： $65 \times 55 \times 33 \mathrm{~mm}$
－Two Station ： $100 \times 55 \times 53 \mathrm{~mm}$
－Three Station ： $134 \times 55 \times 53 \mathrm{~mm}$

$$
\text { - Eight Station: } 305 \times 55 \times 53 \mathrm{~mm}
$$

	Flush Head Actuator－Red with Legend－STOP Contact－1＇NC＇	Cat．No．
	Flush Head Actuator－Green with Legend－START Contact－1＇NO＇	EP1FAC01
	Two Position Symmetric Head Selector Switch－ Black with Legend－OFF／ON Contact－1＇NO＇	EP1FAB02

Gen Next Push Button Stations

| Cat. No. |
| :--- | :--- | :--- |
| EP1FAC05 |

[^3]
Standard Series

TEEKAY Series

- Pre assembled actuators with 1 NO (HC61A2) or 1 NC (HC61B2) contact blocks with single row clip

	Description	Cat. No.	Colour (4 ${ }^{\text {th }}$ Digit)
	Flush head Push Button with 1 NC Block	TD1 \square AB2	1-Red 2-Green 3-Black 4-Yellow 5-White/Opal 6-Blue 7-Orange
	Flush head Push Button with 1 NO Block	TD1口AA2	1-Red 2-Green 3-Black 4-Yellow 5-White/Opal 6-Blue 7-Orange
	Projecting head Push Button with 1 NC Block	TD4 \square AB2	1-Red 2-Green 3-Black 4-Yellow 5-White/Opal 6-Blue 7-Orange
	Projecting head Push Button with 1 NO Block	TD4 \square AA2	1-Red 2-Green 3-Black 4-Yellow 5-White/Opal 6-Blue 7-Orange
	Symmetrical head 2 position selector switch (NSR) with 1 NC Block	TK63AB2	3-Black
	Symmetrical head 2 position selector switch (NSR) with1 NO Block	TK63AA2	3-Black

TEEKAY Series

		Description	Cat. No.	Colour (4 ${ }^{\text {th }}$ Digit)
		Symmetrical head 2 position selector switch (SR) with1 NC Block	TI63AB2	3-Black
		Symmetrical head 2 position selector switch (SR) with1 NO Block	TI63AA2	3-Black
		Mushroom Head Push Turn Actuator with 1 NC	TH5 \square AB2	1-Red 2-Green 3-Black 4-Yellow
		Mushroom Head Push Turn Actuator with 1 NO	TH5 \square AA2	
		Mushroom Head Push Function Actuator with 1 NC	TD5 \square AB2	1-Red 2-Green 3-Black 4-Yellow
		Mushroom Head Push Function Actuator with 1 NO	TD5 \square AA2	

Standard Push Button \& Selector Actuators Ø 22.5 mm

- Contact blocks HC61A2 \& HC61B2

	Description	Cat. No.	Colour (6 ${ }^{\text {th }}$ Digit)
	Flush Head	HD15C \square	1-Red 2-Green 3-Black 4-Yellow 5-White/Opal 6-Blue 7-Orange 8-Colorless
	Projecting Head 'Push Function'	HD45C \square	1-Red 2-Green 3-Black 4-Yellow 5-White/Opal 6-Blue 7-Orange 8-Colorless
	Projecting Head ‘Push - Push Function'	HF45C \square	1-Red 2-Green 3-Black 4-Yellow 5-White/Opal 6-Blue 7-Orange

Modular Remote Control Units

Standard Push Button \& Selector Actuators Ø 22.5 mm

		Description Mushroom Head $\varnothing 40 \mathrm{~mm}$ 'Push Function'	Cat. No.		Colour (6 ${ }^{\text {th }}$ Digit)	
			HD55C \square		1-Red 2-Green 3-Black 4-Yellow	
		Mushroom Head 'Push Turn'	HH55C \square		1-Red 2-Green 3-Black 4-Yellow	
		Mushroom Head With Lock \& Key	HQ55C \square		1-Red 2-Green 3-Black 4-Yellow	
		Mushroom Head 'Push Pull'	HG55B \square		1-Red 2-Green 3-Black 4-Yellow 6-Blue	
		Twin Touch	HD15G \square		3-Black 4-Yellow 5-White/Opal 6-Blue 7-Orange 8-Colourless	
		Symmetric Head	2 Position		1-Red 2-Green 3-Black 5-White/Opal	
		Non Spring Return	HK65C \square			
		Spring Return	H165C \square			
		3 Position				
		Non Spring Return	HL65C■			
		Spring Return	HJ65C■			
		Spring Return from L. H. \mathbb{Z}	HM65C			
		Spring Return from R. H.	HN65C \square			
			Lever Head	2 Position		1-Red 3-Black 5-White/Opal
		Non Spring Return		HK75CD		
		Spring Return		HI75CD		
		3 Position				
		Non Spring Return		HL75C \square		
		Spring Return		HJ75C \square		
		Spring Return from L. H.		HM75CD		
		Spring Return from R. H.		HN75C \square		

Standard Push Button \& Selector Actuators Ø 22.5 mm

Note * In 2 position selector actuator, for operating style ${ }^{\circ}$ replace 2nd digit from K to R and for operating style replace 2nd digit from K to T ** For Lock \& Key, Key removable position Left, Right or Both

Note : 1. Actuators \& Selector Actuators with black ABS collar are offered as Standard eg. : HD15 C1
2. Actuators (except Mushroom Head Push - Pull \& all types of twin touch Actuators) are also available with chrome plated ABS \& Brass collar - For Chrome plated ABS Collar replace 5 th digit C by A eg. : HD15 A11

- For Brass Chrome plated ABS Collar replace C by B eg. : HD15 B1

3. For Non-Illuminated Actuator / Selector Actuator at least 1 NO or NC Block required to make a complete Assembly eg. HD15C1 + HC61A2 makes complete assembly of flush head actuator with 1 NO Block

Standard Illuminated Actuators With LED

- Illuminated Actuators Pre-assembled with LED Holder
- Contact blocks HC61A2 \& HC61B2

	Description	Cat. No.	Colour (4 $4^{\text {th }}$ Digit)	Voltage $\left(5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }} \& 8^{\text {th }} \text { Digit }\right)$
	Flush Head	EAL	R-Red G-Green Y-Yellow A-Amber B-Blue W-White	012C-12 V AC/DC 024C-24 V AC/DC 048C-48 V AC/DC 064C-64 V AC/DC $110 \mathrm{~A}-110 \mathrm{~V}$ AC 110D-110 V DC 240A-240 V AC 220D-220VDC

Standard Illuminated Actuators With LED

Standard Modular Contact Blocks

	Description	Cat. No.	Colour ($4^{\text {th }}$ Digit)	$\begin{aligned} & \text { Voltage }\left(5^{\text {th }}, 6^{\text {th }},\right. \\ & 7^{\text {th }} \& 8^{\text {th }} \text { Digit } \end{aligned}$
	'NO' Block	HC61A2	-	-
	'NC' Block	HC61B2	-	-
	LED Holder for Standard series	EHLD $\square \square \square$	R-Red G-Green Y-Yellow A-Amber B-Blue W-White	$\begin{aligned} & 012 \mathrm{C}-12 \mathrm{~V} \text { AC/DC } \\ & 024 \mathrm{C}-24 \mathrm{VAC/DC} \\ & 048 \mathrm{C}-48 \mathrm{~V} \text { AC/DC } \\ & 064 \mathrm{C}-64 \mathrm{AC} / D \mathrm{C} \\ & 110 \mathrm{~A}-110 \mathrm{VAC} \\ & 110 \mathrm{D}-110 \mathrm{~V} \text { DC } \\ & 240 \mathrm{~A}-240 \mathrm{AC} \\ & 220 \mathrm{D}-220 \mathrm{~V} \text { DC } \end{aligned}$

Standard Push Button Stations (in ABS Engineering plastic body)
Dimension • Single Station : $74 \times 70 \times 48.5 \mathrm{~mm}$ • Two Station : $107 \times 70 \times 48.5 \mathrm{~mm}$

- Three Station : $140 \times 70 \times 48.5 \mathrm{~mm}$

	Description	Cat. No.
	Mushroom Head Actuator 'Push Function' with Legend - STOP Contact - 1 'NC' for Stop	JAE10000
	Mushroom Head Actuator 'Push Turn Type' with Legend - STOP Contact - 1 'NC' for Stop	JAF10000
	Mushroom Head Actuator with Lock and Key on Yellow Cover, with legend - STOP, Contact - 1 'NC' for Emergency Stop	JAG10000
4	Push Button Station with Push Pull Emergency Switch, Red with 1 NC	TJ51B2
	Flush Head Actuator - Red with Legend - STOP Contact - 1 'NC'	JAA10000
	Flush Head Actuator - Green with Legend - START Contact - 1 'NO'	JAB20000
	Illuminated Actuator - Red with Legend - OFF Contact - 1 ' NC ' Bulb Holder with Bulb 240 V AC	JAC50000
	Illuminated Actuator - Green with Legend - ON Contact - 1 ' NO ' Bulb Holder with Bulb 240 V AC	JAD60000
	Two Position Symmetric Head Selector Switch - Black with Legend - OFF / ON Contact - 1 'NO'	JAH20000
	Two Position Lock \& Key Rotary Switch with Legend - OFF / ON Contact - 1 'NO'	JAI20000
	Flush Head Actuator - Green with Legend - START Contact - 1 'NO' (Station One)	JBB2A100
	Flush Head Actuator - Red with Legend - STOP Contact - 1 'NC' (Station Two)	
	Flush Head Actuator - Green with Legend - START Contact - 1 'NO' (Station One)	JBB2F100
	Mushroom Head Actuator 'Push Turn Type' with Legend - STOP Contact - 1 'NC'	
	Pilot Light 240 V AC Colourless Lens (Station One)	JCZ4B2A1
	Flush Head Actuator - Green with Legend - START Contact - 1 'NO' (Station Two)	
	Flush Head Actuator - Red with Legend - STOP Contact - 1 'NC' (Station Three)	
	Flush Head Actuator - Green with Legend - FORWARD Contact - 1 'NO' (Station One)	JDB2A1B2
	Flush Head Actuator - Red with Legend - STOP Contact - 1 'NC' (Station Two)	
	Flush Head Actuator - Green with Legend - REVERSE Contact - 1 'NO' (Station Three)	
	Flush Head Actuator - Green with Legend - UP Contact - 1 'NO' (Station One)	JEB2A1B2
	Flush Head Actuator - Red with Legend - STOP Contact - 1 'NC' (Station Two)	
	Flush Head Actuator - Green with Legend - DOWN Contact-1 'NO' (Station Three)	

[^4]Standard Push Button Stations (in ABS Engineering plastic body)
Push Buttons Station Enclosure with contact block

		Description	Cat. No.
	All Grey single hole		HF999004
	All Grey \& 2 hole of $\varnothing 22.5$		HF999005
	All Grey \& 3 holes of $\varnothing 22.5$		HF999003
	Single hole yellow cover \& gray base		HF995001
	Base mounted contact block for Push Button Stations	'NO' Contact Block	HC42A2
		'NC' Contact Block	HC42B2
		1 'NO' + 1 'NC' Contact Block	HC42C2
		2 'NO’ Contact Block	HC42D2
		2 'NC' Contact Block	HC42E2
		Bulb Holder with Bulb 240 V AC+ 'NO' Contact Block	HC22N1
		Bulb Holder with Bulb 240 V AC+ 'NC' Contact Block	HC22O1

Standard All Purpose Enclosures

Dimension: $110 \times 80 \times 65 \mathrm{~mm}$	Description	Cat. No.
	All Grey without hole	HF999000
	All Grey \& 1 hole of $\varnothing 22.5$	HF999001
	All Grey \& 2 holes of $\varnothing 22.5$	HF999002
Dimension: $170 \times 85 \times 80 \mathrm{~mm}$	4 Station Enclosure (maximum 3 NO/NC per button)	HF999024
Dimension: $80 \times 82 \times 85 \mathrm{~mm}$	1 Station Enclosure (maximum 4 NO or NC)	HF999026

Note: Only standard series actuators and contact block (HC61A2 \& HC62B2) can be used to convert all purpose enclosure box into standard push button station.

Modular Remote Control Units

Accessories and Spares for Standard series

Clips for Modular Blocks	Description	Cat. No.	Clips for Modular Blocks	Description	Cat. No.	
	Second Row Clip (For Vertical Cascading)	HC122030		First Row	HC922002	
	Side Row Clip (For Horizontal Cascading)	HC929002			Single Leg Clip	HE102000

Note : First Row Clip is included for all std series Push Button Actuators, Selector Actuators \& Mushroom Head Assembly

Shroud (Boot) for Actuator	Cat. No.	Colour
	HH152002	Red
	HH153003	Green
	HH154004	Black
	HH155005	Yellow
(For IP67 protection with standard series actuators)	HH150100	Colourless

Spare Lens Cap	Colour	Cat. No.	
		Non Illuminated	Illuminated
	Red	HB103002	HB103103
	Green	HB104000	HB104101
	Black	HB102006	NA
	Yellow	HB105008	HB105109
	White/Opal	HB101004	HB101105
	Blue	HB107010	HB107111
	Orange	HB108012	HB108113
	Colourless	NA	HB100107

Note: It can be used for Gen Next as well as standard series indicator \& actuators.

Modular Remote Control Units

Product	16mm Gen Next LED Indicators	22.5 mm Gen next LED Indicators	Gen next LED Actuators
Rated Voltage	12 V AC/DC	12 V AC/DC	12 V AC/DC
	24 V AC/DC	24 V AC/DC	24 V AC/DC
	30 V AC/DC	30 V AC/DC	30 V AC/DC
	48 V AC/DC	48 V AC/DC	48 V AC/DC
	63.5 V AC/DC	63.5 V AC/DC	63.5 V AC/DC
	110 V AC/DC	110 V AC, 110 V DC	110 V AC, 110 V DC
	240 V AC	240 V AC, 240 V DC	240 V AC, 240 V DC
Operating Voltage	-20% to $+10 \%$ of rated voltage		
Type of LED	SMD LEDs		
Available Colours	Red, Green, Yellow, Amber, Blue and White		
Power Consumption	< 0.6 W		
Insulation Resistance	$>100 \Omega$ at 500 V DC		
Dielectric Strength	1.5 kV AC for 60 sec		
Life	1,00,000 burning hours		
Panel cutout required	EIL series - $\varnothing 22.5 \mathrm{~mm}, \varnothing 30.5 \mathrm{~mm}$ with adapter ring, SIL series - $\varnothing 16 \mathrm{~mm}$		
Overall Dimension	EIL series - $\varnothing 29 \times 52 \mathrm{~mm}$ (approx), SIL series - $\varnothing 19.9 \times 49 \mathrm{~mm}$ (approx)		
Operating Temperature	$-30^{\circ} \mathrm{C} \text { to } 60^{\circ} \mathrm{C}$		
Degree of Protection	IP65 : Above panel and IP20 : for terminals		
International Approvals	CE	CE, UL	CE

Gen Next entegral Actuator

Product	Gen Next entegral Actuator
Function Type	Push, Push-Push, Push Turn, Selector
Contact	NO, NC, NO+NC, $2 \mathrm{NO}, 2 \mathrm{NC}$
Type	Non-Illuminated
Colour	Red / green / black / yellow / orange / blue / white
Rated Operational Levels	6 A, 230 V AC
Electrical Cycle	5 Lac operations
Mechanical Cycle	10 Lac operations
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Operating Force	Max 8 N
Degree of Protection	IP65 : Above panel and IP20 :for terminals
Rated Insulational Voltage	600 V AC
Terminals	Suitable for flexible or solid conductors from $2 \times 1 \mathrm{~mm}^{2}$ to $2 \times 2.5 \mathrm{~mm}^{2}$
Contact Material	AgNi / AgCdo
Insulation Resistance at 500 V DC	$>50 \mathrm{~m} \Omega$
Contact Resistance	$<20 \mathrm{~m} \Omega$
MV drop at 16 ADC	< 200 mV
Disposition of contacts Contact Open Contact Close	

[^0]: Time out for programming mode is 1 minute．After time out，meter will exit programming mode．

[^1]: ${ }^{* * *}$ Note : Please contact nearest L\&T branch office.

[^2]: Note ：Gen Next Modular Contact Blocks（EC1C and EC2C）can be used only with Gen Next Push Button Actuator

[^3]: Note: 1. All Gen next push button stations contains entegral Actuators.
 2. Only entegral actuators can be used for converting Gen next enclosure boxes into Gen Next push button station.
 3. For any other combination of actuators/indicators in push button stations please contact nearest branch office.
 4. EP8F04 is available in single speed for crane application.

[^4]: Note : All standard push button stations contains base mounted contact blocks.

